Patents by Inventor Esha John

Esha John has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220334232
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The processing can include an FM processing path to extract FM signal information, and an AM processing path to extract the TOF signal information.
    Type: Application
    Filed: October 27, 2021
    Publication date: October 20, 2022
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Patent number: 11467267
    Abstract: A light detection and ranging (LIDAR) system includes an automatic gain control (AGC) unit to reduce the dynamic range, reducing processing power and saving circuit area and cost. The system detects a return beam of a light signal transmitted to a target, having a first dynamic range in a time domain. An analog to digital converter (ADC) generates a digital signal based on the return beam. A processor can perform time domain processing on the digital signal, convert the digital signal from the time domain to a frequency domain, and perform frequency domain processing on the digital signal in the frequency domain. The AGC unit can measure a power of the return beam, and apply variable gain in the time domain to reduce a dynamic range of the return beam to a second dynamic range lower than the first dynamic range.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: October 11, 2022
    Assignee: Aeva, Inc.
    Inventors: Esha John, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220308217
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least two up-chirp signals and at least two down-chirp signals toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least two up-chirp signals and the at least two down-chirp signals. The baseband signal includes a first set of peaks associated with the at least one up-chirp signal and a second set of peaks associated with the at least one down-chirp signal. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 29, 2022
    Inventors: Kumar Bhargav Viswanatha, Carlo Giustini, Esha John, Jose Krause Perin, James Nakamura, Rajendra Tushar Moorti
  • Publication number: 20220308192
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least up-chirp frequency and at least one down-chirp frequency toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system may perform IQ processing on one or more returned signals to generate baseband signals in the frequency domain of the returned signals during the at least one up-chirp and the at least one down-chirp. The baseband signal includes a first set of peaks associated with the at least one up-chirp frequency and a second set of peaks associated with the at least one down-chirp frequency. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 29, 2022
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, James Nakmura, Carlo Giustini
  • Publication number: 20220299640
    Abstract: A light detection and ranging (LIDAR) system to transmit an optical beam toward a target and receive a returned optical beam. The optical beam includes an up-chirp frequency and a down-chirp frequency, and is modulated to have phase non-linearities. The LIDAR system generates a baseband signal from the returned optical beam, which includes a plurality of peaks corresponding with the up-chirp frequency and the down-chirp frequency. The LIDAR system identifies a first true peak in the baseband signal, and identifies a second true peak in the baseband signal based, at least in part, on a spectral shape of the second true peak caused by the phase non-linearities. The LIDAR system is to determine the location of the target using the first true peak and the second true peak.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 22, 2022
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11435453
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The LIDAR system can include a modulator to AM modulate an FM modulated light signal with an active modulator to provide the TOF signal information with the FM modulated signal as the power and frequency modulated signal.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: September 6, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 11409000
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The LIDAR system can include a modulator to AM modulate an FM modulated light signal with a passive modulator to provide the TOF signal information with the FM modulated signal as the power and frequency modulated signal.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: August 9, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 11360214
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least up-chirp frequency and at least one down-chirp frequency toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least one up-chirp frequency and the at least one down-chirp frequency. The baseband signal includes a first set of peaks associated with the at least the at least one up-chirp frequency and a second set of peaks associated with the at least one down-chirp frequency. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: June 14, 2022
    Assignee: Aeva, Inc.
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220113412
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least up-chirp frequency and at least one down-chirp frequency toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least one up-chirp frequency and the at least one down-chirp frequency. The baseband signal includes a first set of peaks associated with the at least the at least one up-chirp frequency and a second set of peaks associated with the at least one down-chirp frequency. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 14, 2022
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20220107413
    Abstract: A method of compensation in a light detection and ranging (LIDAR) system. The method includes generating a digitally-sampled target signal. The method also includes compensating for ego-velocity and target velocity in the digitally-sampled target signal based on an estimated ego-velocity and an estimated target velocity to produce a compensated digitally-sampled target signal.
    Type: Application
    Filed: October 28, 2021
    Publication date: April 7, 2022
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Esha John, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11163062
    Abstract: A method of compensating for phase impairments in a light detection and ranging (LIDAR) system includes transmitting a first optical beam towards a target; and receiving a second optical beam from the target to produce a return signal. The method also includes generating a digitally-sampled target signal using a local oscillator (LO) beam, a first photo-detector, and the return signal; and compensating for ego-velocity and target velocity in the digitally-sampled target signal based on an estimated ego-velocity and estimated target velocity. The method also includes performing a phase impairment correction on the digitally-sampled target signal.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: November 2, 2021
    Assignee: AEVA, INC.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Esha John, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20210176102
    Abstract: Apparatuses and methods related to digital mobile radio (DMR) with enhanced transceiver are disclosed herein. The transceiver detects waveforms of signals received by a digital mobile station radio (MS). By detecting whether the waveforms of the signals, the transceiver allows a digital baseband processor of the MS to remain in a sleep state while the signals are being detected by the DMR, thereby reducing an amount of power used while the signals are being detected.
    Type: Application
    Filed: January 25, 2021
    Publication date: June 10, 2021
    Applicant: Analog Devices International Unlimited Company
    Inventors: Jian WANG, Yong WANG, Haijiao FAN, Reza ALAVI, Abdelaziz CHIHOUB, Esha JOHN, Saeed AGHTAR
  • Patent number: 10904055
    Abstract: Apparatuses and methods related to digital mobile radio (DMR) with enhanced transceiver are disclosed herein. The transceiver detects waveforms of signals received by a digital mobile station radio (MS). By detecting whether the waveforms of the signals, the transceiver allows a digital baseband processor of the MS to remain in a sleep state while the signals are being detected by the DMR, thereby reducing an amount of power used while the signals are being detected.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: January 26, 2021
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Jian Wang, Yong Wang, Haijiao Fan, Reza Alavi, Abdelaziz Chihoub, Esha John, Saeed Aghtar
  • Publication number: 20200235966
    Abstract: Apparatuses and methods related to digital mobile radio (DMR) with enhanced transceiver are disclosed herein. The transceiver detects waveforms of signals received by a digital mobile station radio (MS). By detecting whether the waveforms of the signals, the transceiver allows a digital baseband processor of the MS to remain in a sleep state while the signals are being detected by the DMR, thereby reducing an amount of power used while the signals are being detected.
    Type: Application
    Filed: February 6, 2019
    Publication date: July 23, 2020
    Applicant: Analog Devices International Unlimited Company
    Inventors: Jian WANG, Yong WANG, Haijiao FAN, Reza Alavi, Abdelaziz CHIHOUB, Esha JOHN, Saeed AGHTAR
  • Patent number: 9690361
    Abstract: An analog frontend (AFE) interface is dynamically programmable based on a determined operating state. The AFE includes hardware to interface with multiple different sensors. The AFE includes analog processing hardware that can select input data from one of the multiple sensors. The analog processing hardware is coupled to a processor that computes features from the sensor, where the features represent selected operating condition information of the AFE for the sensor. The processor is to determine one of multiple discrete operating states of the AFE for the sensor based on the computed features and dynamically adjust operation of the AFE to interface with the sensor based on the determined operating state. Dynamically adjusting the operation of the AFE includes controlling a configuration of the AFE that controls how the AFE receives the input sensor data from the sensor.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Oguz H Elibol, Varvara Roula Kollia, Esha John, Ryan M Field
  • Publication number: 20160187961
    Abstract: An analog frontend (AFE) interface is dynamically programmable based on a determined operating state. The AFE includes hardware to interface with multiple different sensors. The AFE includes analog processing hardware that can select input data from one of the multiple sensors. The analog processing hardware is coupled to a processor that computes features from the sensor, where the features represent selected operating condition information of the AFE for the sensor. The processor is to determine one of multiple discrete operating states of the AFE for the sensor based on the computed features and dynamically adjust operation of the AFE to interface with the sensor based on the determined operating state. Dynamically adjusting the operation of the AFE includes controlling a configuration of the AFE that controls how the AFE receives the input sensor data from the sensor.
    Type: Application
    Filed: December 24, 2014
    Publication date: June 30, 2016
    Inventors: Oguz H Elibol, Varvara Roula Kollia, Esha John, Ryan M Field