Patents by Inventor Eshel Ben-Jacob

Eshel Ben-Jacob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8594762
    Abstract: A device for positioning at least one cell in at least one addressable position, the device comprising a substrate formed with at least one addressable pore and at least one channel embedded in the substrate and being in fluid communication with the at least one pore. The at least one pore and the at least one channel are designed and constructed such that an under-pressure formed in the at least one channel results in vacuum adherence of the at least one cell onto the at least one pore, such that a single cell is vacuum adhered onto a single pore. In one embodiment, the substrate is a non-conductive substrate and is further formed with one or more electrode structures, where each of the electrode structures is positioned in one of the pores. In an additional embodiment the device is designed locatable onto an organ, such as a brain.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 26, 2013
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Eshel Ben-Jacob, Ronen Segev, Itay Baruchi, Eyal Hulata, Yoash Shapira, Yael Hanein, Tamir Gabay
  • Publication number: 20100136605
    Abstract: A device for positioning at least one cell in at least one addressable position, the device comprising a substrate formed with at least one addressable pore and at least one channel embedded in the substrate and being in fluid communication with the at least one pore. The at least one pore and the at least one channel are designed and constructed such that an under-pressure formed in the at least one channel results in vacuum adherence of the at least one cell onto the at least one pore, such that a single cell is vacuum adhered onto a single pore. In one embodiment, the substrate is a non-conductive substrate and is further formed with one or more electrode structures, where each of the electrode structures is positioned in one of the pores. In an additional embodiment the device is designed locatable onto an organ, such as a brain.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 3, 2010
    Applicant: Ramot At Tel Aviv University Ltd.
    Inventors: Eshel Ben-Jacob, Ronen Segev, Itay Baruchi, Eyal Hulata, Yoash Shapira, Yael Hanein, Tamir Gabay
  • Patent number: 7684844
    Abstract: A device for positioning at least one cell in at least one addressable position, the device comprising a substrate (12) formed with at least one addressable pore (14) and at least one channel (16) embedded in the substrate and being held in fluid communication with the at least one pore. The at least one pore and the at least one channel are designed and constructed such that an under-pressure formed in the at least one channel results in vacuum adherence of the at least one cell onto the at least one pore, such that a single cell is vacuum adhered onto a single pore. In one embodiment, the substrate is a non-conductive substrate and is further formed with one or more electrode structures (22), where each of the electrode structures is positioned in one of the pores. In an additional embodiment the device is designed to be locatable on an organ, such as the brain.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: March 23, 2010
    Assignee: Ramot at Tel Aviv University Ltd.
    Inventors: Eshel Ben-Jacob, Ronen Segev, Itay Baruchi, Eyal Hulata, Yoash Shapira, Yael Hanein, Tamir Gabay
  • Patent number: 7176482
    Abstract: Digital computational circuit comprising a network made of a plurality of identical repetitive DNA-based conductive elements. The DNA-based elements used for the purposes of the invention employ a P-bridge as a tunnel junction for a net charge. The DNA-based element of which the circuit is made may be a DNA SET transistor. The circuit may comprise a DNA resistor built from a plurality of SET transistor elements a series, with a constant over-threshold gate voltage. The circuit may further comprise NOT and NOR gates. The NOT gate can be made of a DNA-based transistor and a resistor, and the resistor can be made by using a DNA SET transistor with a constant over-threshold gate voltage, and by placing a plurality of such DNA SET transistors in series until the resistivity reaches the desired value. The NOR gate, on the other hand, can be built from two NOT elements wherein the output of the first NOT element is connected to the resistor of the second NOT element as it voltage supply.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 13, 2007
    Assignee: Ramot At Tel-Aviv University
    Inventors: Eshel Ben-Jacob, Ziv Hermon, Shay Caspi
  • Patent number: 7160240
    Abstract: Apparatus (40) for generating a localized magnetic field inside a body of a living subject (44) includes first and second electromagnets (46,48), adapted to be positioned in proximity to the body so as to apply magnetic fields thereto. The core (50) of at least one of the electromagnets has a shape that can be altered under control of an operator of the apparatus so as to adjust the magnetic fields to assume a desired relation within the body.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: January 9, 2007
    Assignee: Ramot At Tel Aviv University Ltd.
    Inventors: Aaron Frimerman, Eshel Ben-Jacob
  • Publication number: 20060129043
    Abstract: A device for positioning at least one cell in at least one addressable position, the device comprising a substrate (12) formed with at least one addressable pore (14) and at least one channel (16) embedded in the substrate and being held in fluid communication with the at least one pore. The at least one pore and the at least one channel are designed and constructed such that an under-pressure formed in the at least one channel results in vacuum adherence of the at least one cell onto the at least one pore, such that a single cell is vacuum adhered onto a single pore. In one embodiment, the substrate is a non-conductive substrate and is further formed with one or more electrode structures (22), where each of the electrode structures is positioned in one of the pores. In an additional embodiment the device is designed to be locatable on an organ, such as the brain.
    Type: Application
    Filed: November 3, 2003
    Publication date: June 15, 2006
    Inventors: Eshel Ben-Jacob, Ronen Segev, Itay Baruchi, Eyal Hulata, Yoash Shapira, Yael Hanein, Tamir Gabay
  • Publication number: 20040077923
    Abstract: Apparatus (40) for generating a localized magnetic field inside a body of a living subject (44) includes first and second electromagnets (46,48), adapted to be positioned in proximity to the body so as to apply magnetic fields thereto. The core (50) of at least one of the electromagnets has a shape that can be altered under control of an operator of the apparatus so as to adjust the magnetic fields to assume a desired relation within the body.
    Type: Application
    Filed: December 3, 2003
    Publication date: April 22, 2004
    Inventors: Aaron Frimerman, Eshel Ben-Jacob