Patents by Inventor Ester Caffarel Salvador

Ester Caffarel Salvador has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220280435
    Abstract: Components with relatively high loading of active pharmaceutical ingredients (e.g., drugs), are generally provided. In some embodiments, the component (e.g., a tissue interfacing component) comprises a solid therapeutic agent (e.g., a solid API) and a supporting material (e.g., a binder such as a polymer) such that the solid therapeutic agent is present in the component in an amount of greater than or equal to 10 wt % versus the total weight of the tissue interfacing component. Such tissue-interfacing components may be useful for delivery of API doses e.g., to a subject. Advantageously, in some embodiments, the reduction of volume required to deliver the required API dose as compared to a liquid formulation permits the creation of solid needle delivery systems for a wide variety of drugs in a variety of places/tissues (e.g., tongue, GI mucosal tissue, skin) and/or reduces and/or eliminates the application of an external force in order to inject a drug solution through the small opening in the needle.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 8, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20220257855
    Abstract: Self-actuating articles including, for example, self-actuating needles and/or self-actuating biopsy punches, are generally provided. Advantageously, the self-actuating articles described herein may be useful as a general platform for delivery of a wide variety of pharmaceutical drugs that are typically delivered via injection directly into tissue due to degradation in the GI tract. The self-actuating articles described herein may also be used to deliver sensors and/or take biopsies without the need for an endoscopy. In some embodiments, the article comprises a spring (e.g., a coil spring, a beam, a material having particular mechanical recovery characteristics).
    Type: Application
    Filed: May 17, 2018
    Publication date: August 18, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Patent number: 11369574
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: June 28, 2022
    Assignees: Massachusetts Institute of Technology, Novo Nordisk A/S, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer, Jorrit Jeroen Water, Morten Revsgaard Frederiksen, Bo Uldall Kristiansen, Mikkel Oliver Jespersen, Mette Poulsen, Peter Herskind, Brian Jensen
  • Publication number: 20220175681
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: October 8, 2021
    Publication date: June 9, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20220151940
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: November 19, 2021
    Publication date: May 19, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Patent number: 11318293
    Abstract: A platform technology has been designed to provide a means for controlled delivery of single or multiple doses of therapeutic, prophylactic, diagnostic or identifying agents to livestock. The delivery system is based on a livestock ear tag that releases therapeutic and/or prophylactic agent when applied to the ear or other desired anatomical target of the animal. The agent to be delivered is encapsulated in or on microneedles and or microparticles and or nanoparticles or combination thereof on a surface thereon of the male or female part of the tag, which is pressed into the skin so that the microneedles penetrate into the epidermis and dermis layers of the skin. The agent is then released into the animal from the microneedles and or microparticles and or nanoparticles or combination thereof at the site of contact into the epidermis and dermis layers of the skin.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 3, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Michael S. Williams, Jason Siu Wei Li, Jacob Coffey, Christoph Winfried Johannes Steiger, Miguel Jimenez, Robert S. Langer, Ester Caffarel Salvador, Alex Abramson, Carlo Giovanni Traverso
  • Patent number: 11311489
    Abstract: Components with relatively high loading of active pharmaceutical ingredients are generally provided. In some embodiments, the component (e.g., a tissue interfacing component) comprises a solid therapeutic agent and a supporting material such that the solid therapeutic agent is present in the component in an amount of greater than or equal to 10 wt % versus the total weight of the tissue interfacing component. Such tissue-interfacing components may be useful for delivery of API doses e.g., to a subject. Advantageously, in some embodiments, the reduction of volume required to deliver the required API dose as compared to a liquid formulation permits the creation of solid needle delivery systems for a wide variety of drugs in a variety of places/tissues (e.g., tongue, GI mucosal tissue, skin) and/or reduces and/or eliminates the application of an external force in order to inject a drug solution through the small opening in the needle.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: April 26, 2022
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20220080115
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: March 17, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Woman's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20220023602
    Abstract: Systems and methods related to reconfigurable medical devices are described. In some embodiments, a reconfigurable medical device may include a central core and a plurality of arms. The arms may be rotatably coupled to the central core such that the plurality of arms may rotate outwards away from the central core to selectively reconfigure the reconfigurable device between a retracted configuration and an expanded configuration. In an initial state, the arms may be biased outwards away from the central core into the expanded configuration. When the reconfigurable device is exposed to a temperature greater than a threshold temperature, the arms may be biased towards the central core into the retracted configuration. In some embodiments, a reconfigurable medical device may include therapeutic compound-loaded needles coupled to distal portions of the arms.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 27, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Sahab Babaee, Simo Pajovic, Ester Caffarel Salvador
  • Publication number: 20220008701
    Abstract: Systems and methods related to reconfigurable medical devices are described. In some embodiments, a reconfigurable medical device may include a central core and a plurality of arms. The arms may be rotatably coupled to the central core such that the plurality of arms may rotate outwards away from the central core to selectively reconfigure the reconfigurable device between a retracted configuration and an expanded configuration. In an initial state, the arms may be biased outwards away from the central core into the expanded configuration. When the reconfigurable device is exposed to a temperature greater than a threshold temperature, the arms may be biased towards the central core into the retracted configuration. In some embodiments, a reconfigurable medical device may include therapeutic compound-loaded needles coupled to distal portions of the arms.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 13, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Ester Caffarel Salvador, Sahab Babaee, Simo Pajovic
  • Publication number: 20220001159
    Abstract: Actuating components and related methods are generally disclosed. Certain embodiments comprise an actuating component associated with a plurality of microneedles (e.g., for administering a therapeutic agent to a subject). In some embodiments, the actuating component may be administered to a subject such that the plurality of microneedles are deployed at a location internal to the subject (e.g., in the gastrointestinal tract). The actuating component may be contained within, in some embodiments, a capsule (e.g., for oral administration to a subject). In some embodiments, the actuating component has a pre-deployment configuration in which the plurality of microneedles have a first orientation and a deployed configuration in which the plurality of microneedles have a second orientation, different than the first orientation.
    Type: Application
    Filed: May 17, 2019
    Publication date: January 6, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Daniel Minahan, Alex G. Abramson, Ester Caffarel Salvador, Vance Soares
  • Patent number: 11207272
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 28, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Publication number: 20210361919
    Abstract: Articles for rapid release of components including, for example, quick release capsules, are generally provided. Advantageously, in some embodiments, the articles described herein may be configured to prevent fluid from contacting a component h contained therein (e.g., tissue interfacing component) or payload contained therein until a desired time, e.g., the time at which the component is configured to release from the article to a location internal to a subject (e.g., localize to a tissue wall in the subject). In some embodiments, the article comprises a first compartment and a second compartment not in fluid communication with the first compartment. In some embodiments, the first compartment and second compartment are fluidically isolated. For example, in some cases, the first compartment comprises a mechanism for releasing a component contained within the article and the second compartment comprises the component.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 25, 2021
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/S
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, David Dellal, Christoph Winfried Johannes Steiger, Niclas Roxhed, Ester Caffarel Salvador, Vance Soares, Daniel Minahan, Morten Revsgaard Frederiksen
  • Patent number: 11179341
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: November 23, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20210154396
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: May 27, 2021
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20200324095
    Abstract: Components with relatively high loading of active pharmaceutical ingredients are generally provided. In some embodiments, the component (e.g., a tissue interfacing component) comprises a solid therapeutic agent and a supporting material such that the solid therapeutic agent is present in the component in an amount of greater than or equal to 10 wt % versus the total weight of the tissue interfacing component. Such tissue-interfacing components may be useful for delivery of API doses e.g., to a subject. Advantageously, in some embodiments, the reduction of volume required to deliver the required API dose as compared to a liquid formulation permits the creation of solid needle delivery systems for a wide variety of drugs in a variety of places/tissues (e.g., tongue, GI mucosal tissue, skin) and/or reduces and/or eliminates the application of an external force in order to inject a drug solution through the small opening in the needle.
    Type: Application
    Filed: May 17, 2018
    Publication date: October 15, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20200306515
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: October 1, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Publication number: 20200164193
    Abstract: A platform technology has been designed to provide a means for controlled delivery of single or multiple doses of therapeutic, prophylactic, diagnostic or identifying agents to livestock. The delivery system is based on a livestock ear tag that releases therapeutic and/or prophylactic agent when applied to the ear or other desired anatomical target of the animal. The agent to be delivered is encapsulated in or on microneedles and or microparticles and or nanoparticles or combination thereof on a surface thereon of the male or female part of the tag, which is pressed into the skin so that the microneedles penetrate into the epidermis and dermis layers of the skin. The agent is then released into the animal from the microneedles and or microparticles and or nanoparticles or combination thereof at the site of contact into the epidermis and dermis layers of the skin.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Michael S. Williams, Jason Siu Wei Li, Jacob Coffey, Christoph Winfried Johannes Steiger, Miguel Jimenez, Robert S. Langer, Ester Caffarel Salvador, Alex Abramson
  • Publication number: 20200147298
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: May 14, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/S
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer, Jorrit Jeroen Water, Morten Revsgaard Frederiksen, Bo Uldall Kristiansen, Mikkel Oliver Jespersen, Mette Poulsen, Peter Herskind, Brian Jensen