Patents by Inventor Ethan Eade

Ethan Eade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190318206
    Abstract: Various implementations described herein generate training instances that each include corresponding training instance input that is based on corresponding sensor data of a corresponding autonomous vehicle, and that include corresponding training instance output that is based on corresponding sensor data of a corresponding additional vehicle, where the corresponding additional vehicle is captured at least in part by the corresponding sensor data of the corresponding autonomous vehicle. Various implementations train a machine learning model based on such training instances. Once trained, the machine learning model can enable processing, using the machine learning model, of sensor data from a given autonomous vehicle to predict one or more properties of a given additional vehicle that is captured at least in part by the sensor data.
    Type: Application
    Filed: October 29, 2018
    Publication date: October 17, 2019
    Inventors: Warren Smith, Ethan Eade, Sterling J. Anderson, James Andrew Bagnell, Bartholomeus C. Nabbe, Christopher Paul Urmson
  • Publication number: 20190304097
    Abstract: A relative atlas graph is generated to store mapping data used by an autonomous vehicle. The relative atlas graph may be generated for a geographical area based on observations collected from the geographical area, and may include element nodes corresponding to elements detected from the observations along with edges that connect pairs of element nodes and define relative poses between the elements for connected pairs of element nodes.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Ethan Eade, Michael Bode
  • Publication number: 20190303457
    Abstract: A relative atlas may be used to lay out elements in a digital map used in the control of an autonomous vehicle. A vehicle pose for the autonomous vehicle within a geographical area may be determined, and the relative atlas may be accessed to identify elements in the geographical area and to determine relative poses between those elements. The elements may then be laid out within the digital map using the determined relative poses, e.g., for use in planning vehicle trajectories, for estimating the states of traffic controls, or for tracking and/or identifying dynamic objects, among other purposes.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Ethan Eade, Michael Bode, James Andrew Bagnell
  • Publication number: 20190303392
    Abstract: A relative atlas may be used to lay out elements in a digital map used in the control of an autonomous vehicle. A vehicle pose for the autonomous vehicle within a geographical area may be determined, and the relative atlas may be accessed to identify elements in the geographical area and to determine relative poses between those elements. The elements may then be laid out within the digital map using the determined relative poses, e.g., for use in planning vehicle trajectories, for estimating the states of traffic controls, or for tracking and/or identifying dynamic objects, among other purposes.
    Type: Application
    Filed: February 8, 2019
    Publication date: October 3, 2019
    Inventors: Ethan Eade, Michael Bode, James Andrew Bagnell
  • Patent number: 10379606
    Abstract: A computing device is provided, including a display configured to display a plurality of holograms superimposed upon a physical environment. The computing device may further comprise a processor configured to store in non-volatile memory a representation of the physical environment, including a plurality of hologram anchors indicating locations at which the holograms are displayed. The processor may store a priority level of each hologram anchor, wherein each priority level is selected from a plurality of priority levels including a high priority level and a low priority level, and wherein at least one hologram anchor has the low priority level. The processor may determine that a total size of the plurality of hologram anchors exceeds a predetermined size threshold. The processor may, for at least one hologram anchor assigned the low priority level, delete that hologram anchor from the representation of the physical environment.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 13, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Ethan Eade, Jeroen Vanturennout, Neena Kamath, Alex Christopher Turner, David Fields, Jonathan David Hildebrandt, Michael Grabner, Gavin Dean Lazarow, Tushar Cyril Bhatnagar
  • Publication number: 20180299275
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Application
    Filed: March 14, 2018
    Publication date: October 18, 2018
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Publication number: 20180297208
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 18, 2018
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Publication number: 20180285052
    Abstract: A computing device and method are provided for transmitting a relevant subset of map data, called a neighborhood, to enable mutual spatial understanding by multiple display devices around a target virtual location to display a shared hologram in the same exact location in the physical environment at the same moment in time. The computing device may comprise a processor, a memory operatively coupled to the processor, and an anchor transfer program stored in the memory and executed by the processor.
    Type: Application
    Filed: May 11, 2017
    Publication date: October 4, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ethan EADE, Jeroen VANTURENNOUT, Jonathan LYONS, David FIELDS, Gavin Dean LAZAROW, Tushar Cyril BHATNAGAR
  • Publication number: 20180286128
    Abstract: A computing device is provided, including a display configured to display a plurality of holograms superimposed upon a physical environment. The computing device may further comprise a processor configured to store in non-volatile memory a representation of the physical environment, including a plurality of hologram anchors indicating locations at which the holograms are displayed. The processor may store a priority level of each hologram anchor, wherein each priority level is selected from a plurality of priority levels including a high priority level and a low priority level, and wherein at least one hologram anchor has the low priority level. The processor may determine that a total size of the plurality of hologram anchors exceeds a predetermined size threshold. The processor may, for at least one hologram anchor assigned the low priority level, delete that hologram anchor from the representation of the physical environment.
    Type: Application
    Filed: June 5, 2017
    Publication date: October 4, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ethan EADE, Jeroen VANTURENNOUT, Neena KAMATH, Alex Christopher TURNER, David FIELDS, Jonathan David HILDEBRANDT, Michael GRABNER, Gavin Dean LAZAROW, Tushar Cyril BHATNAGAR
  • Patent number: 9969089
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 15, 2018
    Assignee: iRobot Corporation
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Patent number: 9952053
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: April 24, 2018
    Assignee: iRobot Corporation
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Patent number: 9910444
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. Certain embodiments contemplate improvements to the front-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate a novel landmark matching process. Certain of these embodiments also contemplate a novel landmark creation process. Certain embodiments contemplate improvements to the back-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate algorithms for modifying the SLAM graph in real-time to achieve a more efficient structure.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 6, 2018
    Assignee: iRobot Corporation
    Inventors: Ethan Eade, Mario E. Munich, Philip Fong
  • Publication number: 20180003511
    Abstract: A system to use submaps to control operation of a vehicle is disclosed. A storage system may be provided with a vehicle to store a collection of submaps that represent a geographic area where the vehicle may be driven. A programmatic interface may be provided to receive submaps and submap updates independently of other submaps.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Brett Browning, Peter Hansen, Ethan Eade, David Prasser, David LaRose, Robert Zlot
  • Publication number: 20180005407
    Abstract: A system to use submaps to control operation of a vehicle is disclosed. A storage system may be provided with a vehicle to store a collection of submaps that represent a geographic area where the vehicle may be driven. A programmatic interface may be provided to receive submaps and submap updates independently of other submaps.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Brett Browning, Peter Hansen, Ethan Eade, David Prasser, David LaRose, Robert Zlot
  • Publication number: 20180005050
    Abstract: A system to use submaps to control operation of a vehicle is disclosed. A storage system may be provided with a vehicle to store a collection of submaps that represent a geographic area where the vehicle may be driven. A programmatic interface may be provided to receive submaps and submap updates independently of other submaps.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Brett Browning, Peter Hansen, Ethan Eade, David Prasser, David LaRose, Robert Zlot
  • Patent number: 9767609
    Abstract: Embodiments are disclosed that relate to determining a pose of a device. One disclosed embodiment provides a method comprising receiving sensor information from one or more sensors of the device, and selecting a motion-family model from a plurality of different motion-family models based on the sensor information. The method further comprises providing the sensor information to the selected motion-family model and outputting an estimated pose of the device according to the selected motion-family model.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: September 19, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Ethan Eade, Michael John Ebstyne, Frederick Schaffalitzky, Drew Steedly
  • Patent number: 9759918
    Abstract: Embodiments related to mapping an environment of a machine-vision system are disclosed. For example, one disclosed method includes acquiring image data resolving one or more reference features of an environment and computing a parameter value based on the image data, wherein the parameter value is responsive to physical deformation of the machine-vision system.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: September 12, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Michael John Ebstyne, Frederik Schaffalitzky, Drew Steedly, Georg Klein, Ethan Eade, Michael Grabner
  • Patent number: 9623557
    Abstract: A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: April 18, 2017
    Assignee: iRobot Corporation
    Inventors: Steffen Gutmann, Ethan Eade, Philip Fong, Mario Munich
  • Publication number: 20170050318
    Abstract: A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
    Type: Application
    Filed: August 26, 2016
    Publication date: February 23, 2017
    Inventors: Steffen Gutmann, Ethan Eade, Philip Fong, Mario Munich
  • Publication number: 20170052033
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 23, 2017
    Inventors: PHILIP FONG, Ethan Eade, Mario E. Munich