Patents by Inventor Ethan Falk Petersen

Ethan Falk Petersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806517
    Abstract: A circulation assist system measures impeller displacement for use in estimating a blood flow rate related parameter. A circulation assist system includes a blood pump and a controller. The blood pump includes an impeller magnetically supported within a blood flow channel. The blood pump includes one or more sensors configured to generate output indicative of displacement of the impeller along the blood flow channel induced by a blood-flow induced thrust load applied to the impeller. The controller is configured to process the output generated by the one or more sensors to determine the displacement of the impeller along the blood flow channel. The controller is configured to process the determined displacement of the impeller to estimate at least one of the thrust load applied to the impeller, a pressure differential of the blood impelled through the blood flow channel, and a flow rate of blood pumped by the blood pump.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 7, 2023
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 11239701
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 1, 2022
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Publication number: 20210135497
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Application
    Filed: September 17, 2020
    Publication date: May 6, 2021
    Inventor: Ethan Falk Petersen
  • Patent number: 10804744
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 13, 2020
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Publication number: 20200282121
    Abstract: A circulation assist system measures impeller displacement for use in estimating a blood flow rate related parameter. A circulation assist system includes a blood pump and a controller. The blood pump includes an impeller magnetically supported within a blood flow channel. The blood pump includes one or more sensors configured to generate output indicative of displacement of the impeller along the blood flow channel induced by a blood-flow induced thrust load applied to the impeller. The controller is configured to process the output generated by the one or more sensors to determine the displacement of the impeller along the blood flow channel. The controller is configured to process the determined displacement of the impeller to estimate at least one of the thrust load applied to the impeller, a pressure differential of the blood impelled through the blood flow channel, and a flow rate of blood pumped by the blood pump.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Applicant: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 10722630
    Abstract: A pressure differential across a blood pump and/or a flow rate of blood pumped by the blood pump is estimated based at least in part on impeller thrust load. A blood pump for a circulation assist system includes a housing forming a blood flow channel, an impeller, one or more support members coupled to the housing, a sensor, and a controller operatively coupled with the sensor. At least one of the one or more support members react a thrust load applied to the impeller by blood impelled through the blood flow channel by the impeller. The sensor generates output indicative of the magnitude of the thrust load. The controller is configured to process the sensor output to estimate at least one of a pressure differential across the blood pump and a flow rate of blood pumped by the blood pump.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: July 28, 2020
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Publication number: 20190089201
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 21, 2019
    Inventor: Ethan Falk Petersen
  • Patent number: 10177604
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: January 8, 2019
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Publication number: 20170104369
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 13, 2017
    Inventor: Ethan Falk Petersen
  • Publication number: 20170021070
    Abstract: A pressure differential across a blood pump and/or a flow rate of blood pumped by the blood pump is estimated based at least in part on impeller thrust load. A blood pump for a circulation assist system includes a housing forming a blood flow channel, an impeller, one or more support members coupled to the housing, a sensor, and a controller operatively coupled with the sensor. At least one of the one or more support members react a thrust load applied to the impeller by blood impelled through the blood flow channel by the impeller. The sensor generates output indicative of the magnitude of the thrust load. The controller is configured to process the sensor output to estimate at least one of a pressure differential across the blood pump and a flow rate of blood pumped by the blood pump.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 26, 2017
    Inventor: Ethan Falk Petersen