Patents by Inventor Ethan H. Cannon

Ethan H. Cannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11601119
    Abstract: A flip-flop circuit comprises a pass gate, a feedback inverter, and an interleaved filter. The pass gate comprises a clock input and an inverting clock input. The feedback inverter includes a feedback input coupled to both the clock input and the inverting clock input of the pass gate. The interleaved filter comprises a delay circuit including a delay output, a C-gate element, and a blocking inverter. The C-gate element includes a C-gate input and a C-gate output. The C-gate input is coupled to the delay output of the delay circuit and the pass gate, and the C-gate output is coupled to the feedback input of the feedback inverter. The blocking inverter includes a blocking input and a blocking output. The blocking input is coupled to the delay output of the delay circuit, and the blocking output is coupled to the feedback input of the feedback inverter.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 7, 2023
    Assignee: THE BOEING COMPANY
    Inventors: Salim A. Rabaa, Ethan H. Cannon, Manuel F. Cabanas-Holmen
  • Publication number: 20220200585
    Abstract: A flip-flop circuit comprises a pass gate, a feedback inverter, and an interleaved filter. The pass gate comprises a clock input and an inverting clock input. The feedback inverter includes a feedback input coupled to both the clock input and the inverting clock input of the pass gate. The interleaved filter comprises a delay circuit including a delay output, a C-gate element, and a blocking inverter. The C-gate element includes a C-gate input and a C-gate output. The C-gate input is coupled to the delay output of the delay circuit and the pass gate, and the C-gate output is coupled to the feedback input of the feedback inverter. The blocking inverter includes a blocking input and a blocking output. The blocking input is coupled to the delay output of the delay circuit, and the blocking output is coupled to the feedback input of the feedback inverter.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 23, 2022
    Inventors: Salim A. Rabaa, Ethan H. Cannon, Manuel F. Cabanas-Holmen
  • Patent number: 11029355
    Abstract: A test structure for measuring static noise margin (SNM) for one or more static random access memory (SRAM) cells can include a first transistor gate (TG) and a second TG electrically coupled to each SRAM cell. In an implementation, an interconnect between an output of a first inverter and an input of a second inverter of the SRAM cell can be electrically disconnected using a cut off. During operation of the SRAM cell, internal storage nodes within the SRAM cell can be electrically coupled through the first TG and the second TG to, for example, external pins and to a test fixture. Electrical parameters such as voltage can be measured at the internal storage nodes through the external pins and used to calculate SNM of the SRAM cell.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 8, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Mark Yao, Manuel F. Cabanas-Holmen, Ethan H. Cannon
  • Publication number: 20200319243
    Abstract: A test structure for measuring static noise margin (SNM) for one or more static random access memory (SRAM) cells can include a first transistor gate (TG) and a second TG electrically coupled to each SRAM cell. In an implementation, an interconnect between an output of a first inverter and an input of a second inverter of the SRAM cell can be electrically disconnected using a cut off. During operation of the SRAM cell, internal storage nodes within the SRAM cell can be electrically coupled through the first TG and the second TG to, for example, external pins and to a test fixture. Electrical parameters such as voltage can be measured at the internal storage nodes through the external pins and used to calculate SNM of the SRAM cell.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Inventors: Mark Yao, Manuel F. Cabanas-Holmen, Ethan H. Cannon
  • Patent number: 9223037
    Abstract: Systems and methods to ensure correct operation of a semiconductor chip in the presence of ionizing radiation is disclosed. The system includes a semiconductor chip, a first radiation detection array incorporated in the semiconductor chip, and at least one additional radiation detection array incorporated in the semiconductor chip. a processor determines a region of the semiconductor chip affected by an incident radiation particle by analyzing a trajectory of the radiation particle determined from locations of sensors hit by the radiation particle in the first radiation detection array and the at least one additional radiation detection array. The processor determines whether corrective action is needed based on the region of the semiconductor chip affected by the incident radiation particle.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: December 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ethan H. Cannon, Michael J. Hauser, Timothy D. Sullivan
  • Patent number: 9165917
    Abstract: Each one of a pair of CMOS transistors is formed in its own island and a gate terminal for each transistor is formed by a single, in-line conductor connecting both gate terminals together. This type of “in-line” connection achieves nearly a five-time improvement in the reduction of the ability of ionizing radiation particles to strike both transistors at the same time as compared to prior art “side-by-side” transistor stacking through use of a relatively smaller solid angle spanning the two transistors. This results in “hardening” of the transistors and improving their resistance to single event upsets and, thus, improving the soft error rate (SER) of the transistors.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ethan H. Cannon, David F. Heidel, K. Paul Muller, Alicia Wang
  • Patent number: 8647909
    Abstract: An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Michael J. Hauser, Timothy D. Sullivan
  • Publication number: 20140032135
    Abstract: Systems and methods to ensure correct operation of a semiconductor chip in the presence of ionizing radiation is disclosed. The system includes a semiconductor chip, a first radiation detection array incorporated in the semiconductor chip, and at least one additional radiation detection array incorporated in the semiconductor chip. a processor determines a region of the semiconductor chip affected by an incident radiation particle by analyzing a trajectory of the radiation particle determined from locations of sensors hit by the radiation particle in the first radiation detection array and the at least one additional radiation detection array. The processor determines whether corrective action is needed based on the region of the semiconductor chip affected by the incident radiation particle.
    Type: Application
    Filed: April 9, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: ETHAN H. CANNON, MICHAEL J. HAUSER, TIMOTHY D. SULLIVAN
  • Patent number: 8354858
    Abstract: A method of determining one or more transistors within a particular circuit to be respectively replaced with a hardened transistor includes: identifying, as not requiring hardening, one or more transistors; identifying, as candidates for hardening, each transistor in the circuit not previously identified as not requiring hardening; and employing the hardened transistor in place of a transistor identified as a candidate for hardening. The circuit is a latch and the transistor is an SOI CMOS FET. The transistor is also an SOI transistor. The series transistor includes first and second series-connected transistors having a shared source/drain region whereby a drain of the first series-connected transistor is merged with a source of the second series-connected transistor.
    Type: Grant
    Filed: January 8, 2011
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, AJ KleinOsowski, K. Paul Muller, Tak H. Ning, Philip J. Oldiges, Leon J. Sigal, James D. Warnock, Dieter Wendel
  • Patent number: 8300452
    Abstract: A digital logic storage structure includes cross coupled first and second complementary metal oxide semiconductor (CMOS) inverters formed on a semiconductor substrate, the CMOS inverters including a first storage node and a second storage node that is the logical complement of the first storage node; both of the first and second storage nodes each selectively coupled to a deep trench capacitor through a switching transistor, with the switching transistors controlled by a common capacitance switch line coupled to gate conductors thereof; wherein, in a first mode of operation, the switching transistors are rendered nonconductive so as to isolate the deep trench capacitors from the inverter storage nodes and, in a second mode of operation, the switching transistors are rendered conductive so as to couple the deep trench capacitors to their respective storage nodes, thereby providing increased resistance of the storage nodes to single event upsets (SEUs).
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Toshiharu Furukawa, David Horak, Charles W. Koburger, III, Jack A. Mandelman
  • Patent number: 8207753
    Abstract: The different advantageous embodiments provide an integrated circuit comprising a number of latches and a number of filters. Each latch in the number of latches has a plurality of inputs and a plurality of storage nodes. The plurality of storage nodes includes a number of pairs of circuit nodes that form a number of upsettable circuit node pairs. Each input of the plurality of inputs is connected to a corresponding storage node in the plurality of storage nodes. Each filter in the number of filters has an input and a plurality of outputs. Each of the plurality of outputs is connected to a corresponding input of the plurality of inputs of a latch in the number of latches. Each filter in the number of filters is located between two circuit nodes forming an upsettable circuit node pair of the latch in the number of latches to increase critical node spacing.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 26, 2012
    Assignee: The Boeing Company
    Inventors: Manuel F. Cabanas-Holmen, Ethan H. Cannon, Salim A. Rabaa
  • Publication number: 20120122260
    Abstract: An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
    Type: Application
    Filed: January 25, 2012
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan H. Cannon, Michael J. Hauser, Timothy D. Sullivan
  • Patent number: 8138573
    Abstract: An on-chip heater and methods for fabrication thereof and use thereof provide that the heater is located within an isolation region that in turn is located within a semiconductor substrate. The heater has a thermal output capable or raising the semiconductor substrate to a temperature of at least about 200° C. The heater may be used for thermally annealing trapped charges within dielectric layers within the semiconductor structure.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Alvin W. Strong
  • Patent number: 8133772
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes an active semiconductor layer, a semiconductor device having a gate disposed on top of the active semiconductor layer, and source and drain regions and a body/channel region disposed within the active semiconductor layer, an insulator layer having a first and second side, the first side being adjacent to the active semiconductor layer, a substrate disposed adjacent to the second side of the insulator layer, a deep trench capacitor disposed under the body/channel region of the semiconductor device. The deep trench capacitor electrically connects with and contacts the body/channel region of the semiconductor device, and is located adjacent to the gate of the semiconductor device. The semiconductor structure increases a critical charge Qcrit, thereby reducing a soft error rate (SER) of the semiconductor device.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kerry Bernstein, Ethan H. Cannon, Francis R. White
  • Patent number: 8120131
    Abstract: An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Michael J. Hauser, Timothy D. Sullivan
  • Publication number: 20110309856
    Abstract: The different advantageous embodiments provide an integrated circuit comprising a number of latches and a number of filters. Each latch in the number of latches has a plurality of inputs and a plurality of storage nodes. The plurality of storage nodes includes a number of pairs of circuit nodes that form a number of upsettable circuit node pairs. Each input of the plurality of inputs is connected to a corresponding storage node in the plurality of storage nodes. Each filter in the number of filters has an input and a plurality of outputs. Each of the plurality of outputs is connected to a corresponding input of the plurality of inputs of a latch in the number of latches. Each filter in the number of filters is located between two circuit nodes forming an upsettable circuit node pair of the latch in the number of latches to increase critical node spacing.
    Type: Application
    Filed: January 27, 2011
    Publication date: December 22, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Manuel F. Cabanas-Holmen, Ethan H. Cannon, Salim A. Rabaa
  • Patent number: 8054099
    Abstract: The different advantageous embodiments provide an integrated circuit comprising a number of latches and a number of filters. Each latch in the number of latches has a plurality of inputs and a plurality of storage nodes. The plurality of storage nodes includes a number of pairs of circuit nodes that form a number of upsettable circuit node pairs. Each input of the plurality of inputs is connected to a corresponding storage node in the plurality of storage nodes. Each filter in the number of filters has an input and a plurality of outputs. Each of the plurality of outputs is connected to a corresponding input of the plurality of inputs of a latch in the number of latches. Each filter in the number of filters is located between two circuit nodes forming an upsettable circuit node pair of the latch in the number of latches to increase critical node spacing.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 8, 2011
    Assignee: The Boeing Company
    Inventors: Manuel F. Cabanas-Holmen, Ethan H. Cannon, Salim A. Rabaa
  • Publication number: 20110177660
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes an active semiconductor layer, a semiconductor device having a gate disposed on top of the active semiconductor layer, and source and drain regions and a body/channel region disposed within the active semiconductor layer, an insulator layer having a first and second side, the first side being adjacent to the active semiconductor layer, a substrate disposed adjacent to the second side of the insulator layer, a deep trench capacitor disposed under the body/channel region of the semiconductor device. The deep trench capacitor electrically connects with and contacts the body/channel region of the semiconductor device, and is located adjacent to the gate of the semiconductor device. The semiconductor structure increases a critical charge Qcrit, thereby reducing a soft error rate (SER) of the semiconductor device.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John E. Barth, JR., Kerry Bernstein, Ethan H. Cannon, Francis R. White
  • Publication number: 20110163365
    Abstract: A digital logic storage structure includes cross coupled first and second complementary metal oxide semiconductor (CMOS) inverters formed on a semiconductor substrate, the CMOS inverters including a first storage node and a second storage node that is the logical complement of the first storage node; both of the first and second storage nodes each selectively coupled to a deep trench capacitor through a switching transistor, with the switching transistors controlled by a common capacitance switch line coupled to gate conductors thereof; wherein, in a first mode of operation, the switching transistors are rendered nonconductive so as to isolate the deep trench capacitors from the inverter storage nodes and, in a second mode of operation, the switching transistors are rendered conductive so as to couple the deep trench capacitors to their respective storage nodes, thereby providing increased resistance of the storage nodes to single event upsets (SEUs).
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan H. Cannon, Toshiharu Furukawa, David Horak, Charles W. Koburger, III, Jack A. Mandelman
  • Patent number: 7965540
    Abstract: A digital logic storage structure includes cross coupled first and second complementary metal oxide semiconductor (CMOS) inverters formed on a semiconductor substrate, the CMOS inverters including a first storage node and a second storage node that is the logical complement of the first storage node; both of the first and second storage nodes each selectively coupled to a deep trench capacitor through a switching transistor, with the switching transistors controlled by a common capacitance switch line coupled to gate conductors thereof; wherein, in a first mode of operation, the switching transistors are rendered nonconductive so as to isolate the deep trench capacitors from the inverter storage nodes and, in a second mode of operation, the switching transistors are rendered conductive so as to couple the deep trench capacitors to their respective storage nodes, thereby providing increased resistance of the storage nodes to single event upsets (SEUs).
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Toshiharu Furukawa, David Horak, Charles W. Koburger, III, Jack A. Mandelman