Patents by Inventor Etienne Shaffer

Etienne Shaffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200257098
    Abstract: Disclosed herein are systems for imaging of samples, for example, using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. In some embodiments, detecting optics a reused to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20200033581
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Patent number: 10539776
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 21, 2020
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss
  • Publication number: 20190137752
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: September 28, 2018
    Publication date: May 9, 2019
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20190129158
    Abstract: Disclosed herein are sample dishes for use with microscopes that are simple to mount on a microscope and facilitate easy manipulation of tissue samples disposed thereon during imaging as well as methods of their use. A sample dish comprises an optical interface and, optionally, a support member that holds the optical interface. The optical interface of a sample dish is suitably transparent and planar such that a focal plane of a microscope can reside uniformly at or within a surface of a sample during imaging. In certain embodiments, a support member comprises a dish for holding excess fluid. In certain embodiments, a sample dish comprises separation ribs. In certain embodiments, a sample dish comprises one or more manipulation members (e.g., tabs). In certain embodiments, a sample dish is used with an imaging artifact reducing fluid.
    Type: Application
    Filed: September 28, 2018
    Publication date: May 2, 2019
    Inventors: Etienne Shaffer, Jonathan Abel Pirolet, Frédéric Schmitt, Bastien Rachet, Diego Joss
  • Publication number: 20180348142
    Abstract: The disclosed technology brings histopathology into the operating theatre, to enable real-time intra-operative digital pathology. The disclosed technology utilizes confocal imaging devices image, in the operating theatre, “optical slices” of fresh tissue—without the need to physically slice and otherwise process the resected tissue as required by frozen section analysis (FSA). The disclosed technology, in certain embodiments, includes a simple, operating-table-side digital histology scanner, with the capability of rapidly scanning all outer margins of a tissue sample (e.g., resection lump, removed tissue mass). Using point-scanning microscopy technology, the disclosed technology, in certain embodiments, precisely scans a thin “optical section” of the resected tissue, and sends the digital image to a pathologist rather than the real tissue, thereby providing the pathologist with the opportunity to analyze the tissue intra-operatively.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 6, 2018
    Inventors: Bastien Rachet, Davor Kosanic, Etienne Shaffer
  • Patent number: 10094784
    Abstract: The disclosed technology brings histopathology into the operating theater, to enable real-time intra-operative digital pathology. The disclosed technology utilizes confocal imaging devices image, in the operating theater, “optical slices” of fresh tissue—without the need to physically slice and otherwise process the resected tissue as required by frozen section analysis (FSA). The disclosed technology, in certain embodiments, includes a simple, operating-table-side digital histology scanner, with the capability of rapidly scanning all outer margins of a tissue sample (e.g., resection lump, removed tissue mass). Using point-scanning microscopy technology, the disclosed technology, in certain embodiments, precisely scans a thin “optical section” of the resected tissue, and sends the digital image to a pathologist rather than the real tissue, thereby providing the pathologist with the opportunity to analyze the tissue intra-operatively.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: October 9, 2018
    Assignee: SamanTree Medical SA
    Inventors: Bastien Rachet, Davor Kosanic, Etienne Shaffer
  • Patent number: 10088427
    Abstract: The disclosed technology brings histopathology into the operating theater, to enable real-time intra-operative digital pathology. The disclosed technology utilizes confocal imaging devices image, in the operating theater, “optical slices” of fresh tissue—without the need to physically slice and otherwise process the resected tissue as required by frozen section analysis (FSA). The disclosed technology, in certain embodiments, includes a simple, operating-table-side digital histology scanner, with the capability of rapidly scanning all outer margins of a tissue sample (e.g., resection lump, removed tissue mass). Using point-scanning microscopy technology, the disclosed technology, in certain embodiments, precisely scans a thin “optical section” of the resected tissue, and sends the digital image to a pathologist rather than the real tissue, thereby providing the pathologist with the opportunity to analyze the tissue intra-operatively.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 2, 2018
    Assignee: SamanTree Medical SA
    Inventors: Bastien Rachet, Davor Kosanic, Etienne Shaffer
  • Publication number: 20160313252
    Abstract: The disclosed technology brings histopathology into the operating theatre, to enable real-time intra-operative digital pathology. The disclosed technology utilizes confocal imaging devices image, in the operating theatre, “optical slices” of fresh tissue—without the need to physically slice and otherwise process the resected tissue as required by frozen section analysis (FSA). The disclosed technology, in certain embodiments, includes a simple, operating-table-side digital histology scanner, with the capability of rapidly scanning all outer margins of a tissue sample (e.g., resection lump, removed tissue mass). Using point-scanning microscopy technology, the disclosed technology, in certain embodiments, precisely scans a thin “optical section” of the resected tissue, and sends the digital image to a pathologist rather than the real tissue, thereby providing the pathologist with the opportunity to analyze the tissue intra-operatively.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Inventors: Bastien Rachet, Davor Kosanic, Etienne Shaffer
  • Publication number: 20160305926
    Abstract: The disclosed technology brings histopathology into the operating theatre, to enable real-time intra-operative digital pathology. The disclosed technology utilizes confocal imaging devices image, in the operating theatre, “optical slices” of fresh tissue—without the need to physically slice and otherwise process the resected tissue as required by frozen section analysis (FSA). The disclosed technology, in certain embodiments, includes a simple, operating-table-side digital histology scanner, with the capability of rapidly scanning all outer margins of a tissue sample (e.g., resection lump, removed tissue mass). Using point-scanning microscopy technology, the disclosed technology, in certain embodiments, precisely scans a thin “optical section” of the resected tissue, and sends the digital image to a pathologist rather than the real tissue, thereby providing the pathologist with the opportunity to analyze the tissue intra-operatively.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 20, 2016
    Inventors: Bastien Rachet, Davor Kosanic, Etienne Shaffer
  • Patent number: 9134242
    Abstract: The present invention discloses a method and its associated apparatus to retrieve the amplitude and, especially, the phase of nonlinear electromagnetic waves. The application field of the present invention is optical imaging. A sample is probed by coherent electromagnetic radiation, and by a nonlinear interaction such as harmonic generation a nonlinear object wave is emitted. A nonlinear reference wave is generated by interaction of the same nature with the coherent electromagnetic radiation, and an interference between the nonlinear object wave and the nonlinear reference wave is sensed by a detector array. As an example, the technique makes possible real-time nanometric localization and tracking of nonlinear field emitters, such as, but not limited to, nanoparticles.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: September 15, 2015
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Etienne Shaffer, Christian Depeursinge
  • Publication number: 20120069345
    Abstract: The present invention discloses a method and its associated apparatus to retrieve the amplitude and, especially, the phase of nonlinear electromagnetic waves. The application field of the present invention is optical imaging. A sample is probed by coherent electromagnetic radiation, and by a nonlinear interaction such as harmonic generation a nonlinear object wave is emitted. A nonlinear reference wave is generated by interaction of the same nature with the coherent electromagnetic radiation, and an interference between the nonlinear object wave and the nonlinear reference wave is sensed by a detector array. As an example, the technique makes possible real-time nanometric localization and tracking of nonlinear field emitters, such as, but not limited to, nanoparticles.
    Type: Application
    Filed: April 23, 2010
    Publication date: March 22, 2012
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Etienne Shaffer, Christian Depeursinge