Patents by Inventor Etienne Vallee

Etienne Vallee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7903782
    Abstract: An apparatus for determining fractional amounts of each phase of a multiple phase fluid includes an x-ray generator includes a sample chamber is configured to admit therein a sample of fluid for analysis. The chamber is disposed in a radiation path output from the generator. A filter is disposed in the radiation path between the output of the generator and the radiation input of the sample chamber. A first radiation detector is positioned in a radiation path from the sample chamber after radiation has passed through the sample chamber. A thickness and a material of the filter are selected to optimize resolution of radiation detected by the first detector to changes in volume fraction of oil and water in the fluid sample when a gas fraction thereof is between about 90 to 100 percent.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 8, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Joel L. Groves, Etienne Vallee, Peter Wraight
  • Patent number: 7684540
    Abstract: An apparatus and method for determining the phase fraction of a fluid collected downhole is shown comprising an x-ray generator, a filter, a sample cell, and a radiation detector. The filter produces a radiation spectrum with a high energy portion and a low energy portion. Filtered radiation is passed through a sample fluid and the resulting attenuated radiation signal is used in calculating the phase fractions of oil, water, and gas in the sample fluid. In one embodiment, a second reference radiation detector measures the radiation directly from the x-ray generator and this measurement is used in normalizing the fraction result. The ratio of the high energy signal to low energy signal of the reference detector is used in controlling the input voltage of the x-ray generator thus ensuring a stable spectrum.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: March 23, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Joel Groves, Etienne Vallee, Peter Wraight
  • Patent number: 7639781
    Abstract: An x-ray tool for determining a characteristic of an oilfield fluid. The tool may include a generator portion housing a collimator about a target from which x-rays are emitted. In this manner x-rays may be attenuated right at the target such that a majority of shielding otherwise necessary for safety concerns may be eliminated. Rather, by employing the target within the collimator, shielding of the generator may be limited to a single shielding plate within the generator portion that is positioned parallel to the target at the opposite end of an x-ray tube therebetween. As a result of this configuration, an x-ray tool for analysis of oilfield fluids may be provided with a minimum weight of shielding material. Thus, hand-held user friendly embodiments may be safely employed at the oilfield.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: December 29, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Rod Shampine, Joel L. Groves, Anthony Durkowski, Etienne Vallee, Peter Wraight
  • Publication number: 20090161823
    Abstract: An apparatus for determining fractional amounts of each phase of a multiple phase fluid includes an x-ray generator includes a sample chamber is configured to admit therein a sample of fluid for analysis. The chamber is disposed in a radiation path output from the generator. A filter is disposed in the radiation path between the output of the generator and the radiation input of the sample chamber. A first radiation detector is positioned in a radiation path from the sample chamber after radiation has passed through the sample chamber. A thickness and a material of the filter are selected to optimize resolution of radiation detected by the first detector to changes in volume fraction of oil and water in the fluid sample when a gas fraction thereof is between about 90 to 100 percent.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Joel L. Groves, Etienne Vallee, Peter Wraight
  • Patent number: 7542543
    Abstract: A method and apparatus for determining the density and phase fractions of well services fluids is shown including an x-ray generator, a sample cell, and a radiation detector. Radiation is passed through the sample cell and fluid and the attenuated radiation signal is used to evaluate the fluid. In one embodiment, a reference radiation detector measures a filtered radiation signal and controls the acceleration voltage and/or beam current of the x-ray generator using this information. The apparatus may be permanently affixed for long term monitoring or temporarily clamped on to a pipe in production.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 2, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Rod Shampine, Joel Groves, Anthony Durkowski, Etienne Vallee, Peter Wraight
  • Patent number: 7507952
    Abstract: A fluid density determination apparatus and method comprising an X-ray generator emitting a high energy radiation signal and a low energy radiation signal; a sample cell housing a sample of interest and at least one of the high energy and low energy radiation signals being directed through the sample cell; and a radiation detector measuring the output radiation from the sample cell. Data gathered at the radiation detector using the high and low energy signals are used to calculate the density of the fluid sample of interest.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: March 24, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Joel Lee Groves, Etienne Vallee, Peter Wraight
  • Publication number: 20080152080
    Abstract: An x-ray tool for determining a characteristic of an oilfield fluid. The tool may include a generator portion housing a collimator about a target from which x-rays are emitted. In this manner x-rays may be attenuated right at the target such that a majority of shielding otherwise necessary for safety concerns may be eliminated. Rather, by employing the target within the collimator, shielding of the generator may be limited to a single shielding plate within the generator portion that is positioned parallel to the target at the opposite end of an x-ray tube therebetween. As a result of this configuration, an x-ray tool for analysis of oilfield fluids may be provided with a minimum weight of shielding material. Thus, hand-held user friendly embodiments may be safely employed at the oilfield.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 26, 2008
    Inventors: Rod Shampine, Joel L. Groves, Anthony Durkowski, Etienne Vallee, Peter Wraight
  • Publication number: 20080069301
    Abstract: A method and apparatus for determining the density and phase fractions of well services fluids is shown including an x-ray generator, a sample cell, and a radiation detector. Radiation is passed through the sample cell and fluid and the attenuated radiation signal is used to evaluate the fluid. In one embodiment, a reference radiation detector measures a filtered radiation signal and controls the acceleration voltage and/or beam current of the x-ray generator using this information. The apparatus may be permanently affixed for long term monitoring or temporarily clamped on to a pipe in production.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Inventors: Rod Shampine, Joel Groves, Anthony Durkowski, Etienne Vallee, Peter Wraight
  • Publication number: 20080069307
    Abstract: An x-ray tool for determining a characteristic of an oilfield fluid. The tool may include a generator portion housing a collimator about a target from which x-rays are emitted. In this manner x-rays may be attenuated right at the target such that a majority of shielding otherwise necessary for safety concerns may be eliminated. Rather, by employing the target within the collimator, shielding of the generator may be limited to a single shielding plate within the generator portion that is positioned parallel to the target at the opposite end of an x-ray tube therebetween. As a result of this configuration, an x-ray tool for analysis of oilfield fluids may be provided that is no more than about 50 lbs. in total weight. Thus, hand-held user friendly embodiments may be safely employed at the oilfield.
    Type: Application
    Filed: May 22, 2007
    Publication date: March 20, 2008
    Inventors: Rod Shampine, Peter Wraight, Joel L. Groves, Anthony Durkowski, Etienne Vallee
  • Publication number: 20070291898
    Abstract: An apparatus and method for determining the phase fraction of a fluid collected downhole is shown comprising an x-ray generator, a filter, a sample cell, and a radiation detector. The filter produces a radiation spectrum with a high energy portion and a low energy portion. Filtered radiation is passed through a sample fluid and the resulting attenuated radiation signal is used in calculating the phase fractions of oil, water, and gas in the sample fluid. In one embodiment, a second reference radiation detector measures the radiation directly from the x-ray generator and this measurement is used in normalizing the fraction result. The ratio of the high energy signal to low energy signal of the reference detector is used in controlling the input voltage of the x-ray generator thus ensuring a stable spectrum.
    Type: Application
    Filed: June 20, 2006
    Publication date: December 20, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Joel Groves, Etienne Vallee, Peter Wraight
  • Publication number: 20070274443
    Abstract: A fluid density determination apparatus and method comprising an X-ray generator emitting a high energy radiation signal and a low energy radiation signal; a sample cell housing a sample of interest and at least one of the high energy and low energy radiation signals being directed through the sample cell; and a radiation detector measuring the output radiation from the sample cell. Data gathered at the radiation detector using the high and low energy signals are used to calculate the density of the fluid sample of interest.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: JOEL LEE GROVES, ETIENNE VALLEE, PETER WRAIGHT