Patents by Inventor Etsuro Kishio

Etsuro Kishio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7485575
    Abstract: A semiconductor substrate is inserted into a heat treatment apparatus at a low temperature ranging from room temperature to about 50° C., and organic substances included in a metal on the semiconductor substrate are released without carbonization in an annealing process before CMP. Further, organic substances capable of preventing the corrosion of the metal are decomposed, and the organic substances themselves and chlorine, sulfuric acid, and ammonia which are included in the organic substances are diffused out of the metal film by setting the heat treatment apparatus at a rate of temperature rise of 15° C./min or less until a prescribed heat treatment temperature is reached.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: February 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Yoshiharu Hidaka, Etsuro Kishio
  • Patent number: 7250391
    Abstract: The cleaning composition for removing resists includes a salt of hydrofluoric acid and a base not containing a metal (A component), a water-soluble organic solvent (B1 component), at least one organic acid or inorganic acid (C component), water (D component), and, optionally, an ammonium salt (E1 component), and having a pH 4-8. Thus, in manufacturing a semiconductor device, such as a copper interconnecting process, efficiency of removing resist residue and other etching residue after etching or ashing is improved, and corrosion resistance of a copper and an insulating film is also improved.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: July 31, 2007
    Assignees: Renesas Technology Corp., Matsushita Electric Industrial Co., Ltd., EKC Technology K.K.
    Inventors: Itaru Kanno, Yasuhiro Asaoka, Masahiko Higashi, Yoshiharu Hidaka, Etsuro Kishio, Tetsuo Aoyama, Tomoko Suzuki, Toshitaka Hiraga, Toshihiko Nagai
  • Publication number: 20050191853
    Abstract: A semiconductor substrate is inserted into a heat treatment apparatus at a low temperature ranging from room temperature to about 50° C., and organic substances included in a metal on the semiconductor substrate are released without carbonization in an annealing process before CMP. Further, organic substances capable of preventing the corrosion of the metal are decomposed, and the organic substances themselves and chlorine, sulfuric acid, and ammonia which are included in the organic substances are diffused out of the metal film by setting the heat treatment apparatus at a rate of temperature rise of 15° C./min or less until a prescribed heat treatment temperature is reached.
    Type: Application
    Filed: February 10, 2005
    Publication date: September 1, 2005
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Yoshiharu Hidaka, Etsuro Kishio
  • Publication number: 20040106531
    Abstract: The cleaning composition for removing resists includes a salt of hydrofluoric acid and a base not containing a metal (A component), a water-soluble organic solvent (B1 component), at least one acid selected from a group consisting of organic acid and inorganic acid (C component), water (D component), and optionally an ammonium salt (E1 component), and its hydrogen ion concentration (pH) is 4-8. Thus, in the manufacturing process of a semiconductor device such as a copper interconnecting process, removing efficiency of resist residue and other etching residue after etching or ashing improves, and corrosion resistance of copper and insulating film also improves.
    Type: Application
    Filed: July 11, 2003
    Publication date: June 3, 2004
    Applicants: Renesas Technology Corp., Matsushita Electric Industrial Co., Ltd., EKC Technology K.K.
    Inventors: Itaru Kanno, Yasuhiro Asaoka, Masahiko Higashi, Yoshiharu Hidaka, Etsuro Kishio, Tetsuo Aoyama, Tomoko Suzuki, Toshitaka Hiraga, Toshihiko Nagai