Patents by Inventor Etsuro YOSHINO

Etsuro YOSHINO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945285
    Abstract: The air discharge device includes a duct defining: a main flow path through which an air flow passes; and a main hole opened in a flat shape to discharge the air flow as a working air flow toward a downstream from the main flow path. A throttle portion is provided in the duct to reduce a flow path height of the main flow path from an upstream of the air flow toward a downstream of the air flow. A plurality of partitions are arranged to divide the main flow path in a major direction into a pair of side flow paths and at least one center flow path. The plurality of partitions are disposed in the duct such that a flow path width of the center flow path is reduced from the upstream of the air flow toward the downstream of the air flow.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: April 2, 2024
    Assignee: DENSO CORPORATION
    Inventors: Yasuhiro Takeuchi, Etsuro Yoshino, Yuuji Okamura, Jun Yamaoka, Masaharu Sakai, Yusuke Komatsubara, Yasuhiko Niimi, Tatsuya Yoshida, Hidetaka Nomoto
  • Publication number: 20210291630
    Abstract: The air discharge device includes a duct defining: a main flow path through which an air flow passes; and a main hole opened in a flat shape to discharge the air flow as a working air flow toward a downstream from the main flow path. A throttle portion is provided in the duct to reduce a flow path height of the main flow path from an upstream of the air flow toward a downstream of the air flow. A plurality of partitions are arranged to divide the main flow path in a major direction into a pair of side flow paths and at least one center flow path. The plurality of partitions are disposed in the duct such that a flow path width of the center flow path is reduced from the upstream of the air flow toward the downstream of the air flow.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Inventors: Yasuhiro TAKEUCHI, Etsuro YOSHINO, Yuuji OKAMURA, Jun YAMAOKA, Masaharu SAKAI, Yusuke KOMATSUBARA, Yasuhiko NIIMI, Tatsuya YOSHIDA, Hidetaka NOMOTO
  • Publication number: 20210245575
    Abstract: An airflow generating device includes an airflow generating portion, a duct, and a controller. The airflow generating portion is configured to generate an airflow. The duct is configured to guide the airflow to a blowing outlet through which the airflow is blown out toward a passenger in a vehicle cabin. The controller is configured to cause the airflow to be intermittently blown out through the blowing outlet by controlling a frequency of a pulse voltage applied to the air flow generating portion and a duty ratio of a pulse width to a pulse period of the pulse voltage. The controller is configured to control the duty ratio and the frequency of the voltage such that the airflow is blown out through the blowing outlet at a speed between a predetermined lower limit, inclusive, and a maximum lower limit, non-inclusive, which is greater than the lower limit.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Inventors: Etsuro YOSHINO, Yasuhiro TAKEUCHI, Yuuji OKAMURA, Jun YAMAOKA, Masaharu SAKAI, Yusuke KOMATSUBARA, Kazushi SHIKATA, Yasuhiko NIIMI
  • Patent number: 10958133
    Abstract: In an electric motor, a magnetic bearing generates an electromagnetic force between multiple permanent magnets and a coil and rotatably supports an other side of a rotation shaft in an axis line direction. The rotation shaft is configured to be capable of being inclined with a rotation center line using a bearing side of the rotation shaft as a fulcrum. An electronic control device controls a current that flows to the coil such that an axis line of the rotation shaft approaches the rotation center line due to a supporting force which is the electromagnetic force between the multiple permanent magnets and the coil. Accordingly, the rotation shaft is rotatably supported to be freely rotatable by a magnetic bearing and the bearing.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 23, 2021
    Assignees: DENSO CORPORATION, SOKEN, INC., National University Corporation Shizuoka University
    Inventors: Koji Ito, Masanori Yasuda, Shinji Makita, Jun Yamaoka, Masao Tokunaga, Etsuro Yoshino, Junichi Asama
  • Publication number: 20210017977
    Abstract: An air blowing device includes a duct portion and a passage variable device. The duct portion forms a main passage through which an air flow passes, and an outlet is defined downstream of the main passage to blow out the air flow. The passage variable device is configured to change a passage area of the main passage so that the air flow becomes a pulsating flow and is blown out from the outlet.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Inventors: Tatsuya YOSHIDA, Masaharu SAKAI, Jun YAMAOKA, Hidetaka NOMOTO, Etsuro YOSHINO, Yasuhiro TAKEUCHI
  • Publication number: 20170324304
    Abstract: In an electric motor, a magnetic bearing generates an electromagnetic force between multiple permanent magnets and a coil and rotatably supports an other side of a rotation shaft in an axis line direction. The rotation shaft is configured to be capable of being inclined with a rotation center line using a bearing side of the rotation shaft as a fulcrum. An electronic control device controls a current that flows to the coil such that an axis line of the rotation shaft approaches the rotation center line due to a supporting force which is the electromagnetic force between the multiple permanent magnets and the coil. Accordingly, the rotation shaft is rotatably supported to be freely rotatable by a magnetic bearing and the bearing.
    Type: Application
    Filed: October 29, 2015
    Publication date: November 9, 2017
    Inventors: Koji ITO, Masanori YASUDA, Shinji MAKITA, Jun YAMAOKA, Masao TOKUNAGA, Etsuro YOSHINO, Junichi ASAMA