Patents by Inventor Eugen Bogos

Eugen Bogos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220413542
    Abstract: A control input device can include a housing defining an inner volume with a floor, and a shaft having an axis, a manipulating portion, and a sensing end. The control input device can further include a magnet mounted on the sensing end of the shaft such that the magnet is within the inner volume of the housing, and a movement mechanism configured to allow the manipulating portion of the shaft to be moved with respect to the housing such that the movement of the manipulating portion results in corresponding movement of the magnet. The control input device can further include a magnetic sensor at least partially embedded in the floor of the housing and configured to sense the movement of the magnet.
    Type: Application
    Filed: September 6, 2022
    Publication date: December 29, 2022
    Inventors: Perry WEHLMANN, Eugen BOGOS, Brandon COUNCIL
  • Patent number: 11474553
    Abstract: A joystick can include a shaft having an axis, a manipulating portion, and a sensing end with a magnet mounted thereto. The joystick can further include a movement mechanism configured to allow the manipulating portion of the shaft to be moved in three dimensions with respect to the axis of the shaft. The movement of the manipulating portion results in corresponding movement of the magnet that can be sensed in a non-contacting manner by a magnetic sensor positioned relative to the magnet.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 18, 2022
    Assignee: Bourns, Iec.
    Inventors: Perry Wehlmann, Eugen Bogos, Brandon Council
  • Publication number: 20190331507
    Abstract: A multi-turn sensor can include first and second shafts having respective rotational axes that are approximately perpendicular to each other, a first magnet provided at an end of the first shaft, and a second magnet provided at an end of the second shaft. The multi-turn sensor can further include a first magnetic sensor provided adjacent the first magnet to allow non-contacting sensing of angular position of the first shaft as the first shaft rotates, and a second magnetic sensor provided adjacent the second magnet to allow non-contacting sensing of angular position of the second shaft as the second shaft rotates. The multi-turn sensor can further include a gear mechanism configured to couple the first shaft and the second shaft, such that the rotation of the first shaft results in the rotation of the second shaft.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventors: Eugen BOGOS, Perry WEHLMANN, Cameron SCHAEFER, Brandon COUNCIL
  • Publication number: 20190265748
    Abstract: A joystick can include a shaft having an axis, a manipulating portion, and a sensing end with a magnet mounted thereto. The joystick can further include a movement mechanism configured to allow the manipulating portion of the shaft to be moved in three dimensions with respect to the axis of the shaft. The movement of the manipulating portion results in corresponding movement of the magnet that can be sensed in a non-contacting manner by a magnetic sensor positioned relative to the magnet.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventors: Perry WEHLMANN, Eugen BOGOS, Brandon COUNCIL
  • Patent number: 9927262
    Abstract: High-resolution multi-turn sensing apparatus and methods. A method can be implemented to sense a rotational position of a shaft having a longitudinal axis. Such a method can include determining a turn number of the shaft with a first magnet arranged in a non-contact manner with a first magnetic sensor to allow measurement of a linear position of the first magnet relative to the first magnetic sensor. The linear position can be representative of a turn number of the shaft. The method can further include determining an angular position of the shaft within a given turn with a second magnet positioned at an end of the shaft along the longitudinal axis and arranged relative to a second magnetic sensor. The method can further include combining the turn number with the angular position to generate one or more output signals representative of a measured rotational position of the shaft.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: March 27, 2018
    Assignee: Bourns, Inc.
    Inventors: Eugen Bogos, Perry Wehlmann, Christopher Couch
  • Publication number: 20170254676
    Abstract: High-resolution multi-turn sensing apparatus and methods. A method can be implemented to sense a rotational position of a shaft having a longitudinal axis. Such a method can include determining a turn number of the shaft with a first magnet arranged in a non-contact manner with a first magnetic sensor to allow measurement of a linear position of the first magnet relative to the first magnetic sensor. The linear position can be representative of a turn number of the shaft. The method can further include determining an angular position of the shaft within a given turn with a second magnet positioned at an end of the shaft along the longitudinal axis and arranged relative to a second magnetic sensor. The method can further include combining the turn number with the angular position to generate one or more output signals representative of a measured rotational position of the shaft.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 7, 2017
    Inventors: Eugen BOGOS, Perry WEHLMANN, Christopher COUCH
  • Patent number: 9593967
    Abstract: Disclosed are systems and methods for measuring multi-turn position of a shaft with high resolution and in a non-contact manner. In some embodiments, a multi-turn sensing apparatus can include a rotation counter configured to determine a number of turns made by a shaft, and an angular position sensor configured to measure an angular position of the shaft within a given turn. The number of turns can be determined with an M-bit resolution, and the angular position per turn can be measured with an N-bit resolution. Selected appropriately, the rotation counter can be configured to operate as a relatively low resolution; and yet the multi-turn sensing apparatus can maintain the N-bit per-turn angular resolution throughout the full range. Accordingly, the multi-turn sensing apparatus can have an effective resolution of M+N bits.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: March 14, 2017
    Assignee: Bourns, Inc.
    Inventors: Eugen Bogos, Perry Wehlman, Christopher Couch
  • Patent number: 9518840
    Abstract: Disclosed are systems and methods for effectively sensing rotational position of an object. In certain embodiments, a rotational position sensor can include a shaft configured to couple with the rotating object. The shaft can be configured to couple with a magnet carrier such that rotation of the shaft yields translational motion of the carrier. A magnet mounted to the carrier also moves longitudinally with respect to the axis of the shaft, and relative to a magnetic field sensor configured to detect the magnet's longitudinal position. The detected longitudinal position can be in a range corresponding to a rotational range of the shaft, where the rotational range can be greater than one turn. In certain embodiments, the rotational position sensor can include a programmable capability to facilitate ease and flexibility in calibration and use in a wide range of applications.
    Type: Grant
    Filed: February 1, 2015
    Date of Patent: December 13, 2016
    Assignee: Bourns, Inc.
    Inventors: Eugen Bogos, Perry Wehlmann, Thanh Vinh Nguyen
  • Publication number: 20150300839
    Abstract: Disclosed are systems and methods for effectively sensing rotational position of an object. In certain embodiments, a rotational position sensor can include a shaft configured to couple with the rotating object. The shaft can be configured to couple with a magnet carrier such that rotation of the shaft yields translational motion of the carrier. A magnet mounted to the carrier also moves longitudinally with respect to the axis of the shaft, and relative to a magnetic field sensor configured to detect the magnet's longitudinal position. The detected longitudinal position can be in a range corresponding to a rotational range of the shaft, where the rotational range can be greater than one turn. In certain embodiments, the rotational position sensor can include a programmable capability to facilitate ease and flexibility in calibration and use in a wide range of applications.
    Type: Application
    Filed: February 1, 2015
    Publication date: October 22, 2015
    Inventors: Eugen BOGOS, Perry WEHLMANN, Thanh Vinh NGUYEN
  • Publication number: 20150160042
    Abstract: Devices and methods related to high-resolution multi-turn sensors. In some embodiments, a position sensing device can include a shaft having a longitudinal axis, and a first sensor having a magnet and a magnetic sensor. The magnet can be coupled to the shaft, and the magnetic sensor can be positioned relative to the magnet such that the first sensor allows measurement of an angular position of the magnet relative to the magnetic sensor to thereby allow determination of the corresponding angular position of the shaft within a given turn of the shaft. The position sensing device can further include a second sensor coupled to the shaft and configured to allow measurement of a turn-number of the shaft. The second sensor can include one or more of different types sensing functionalities to yield an output representative of the turn-number of the shaft.
    Type: Application
    Filed: September 11, 2014
    Publication date: June 11, 2015
    Inventors: Eugen BOGOS, Christopher COUCH, Perry WEHLMANN
  • Patent number: 8947076
    Abstract: Disclosed are systems and methods for effectively sensing rotational position of an object. In certain embodiments, a rotational position sensor can include a shaft configured to couple with the rotating object. The shaft can be configured to couple with a magnet carrier such that rotation of the shaft yields translational motion of the carrier. A magnet mounted to the carrier also moves longitudinally with respect to the axis of the shaft, and relative to a magnetic field sensor configured to detect the magnet's longitudinal position. The detected longitudinal position can be in a range corresponding to a rotational range of the shaft, where the rotational range can be greater than one turn. In certain embodiments, the rotational position sensor can include a programmable capability to facilitate ease and flexibility in calibration and use in a wide range of applications.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: February 3, 2015
    Assignee: Bourns, Inc.
    Inventors: Eugen Bogos, Perry Wehlman, Thanh Vinh Nguyen
  • Publication number: 20130015844
    Abstract: Disclosed are systems and methods for measuring multi-turn position of a shaft with high resolution and in a non-contact manner. In some embodiments, a multi-turn sensing apparatus can include a rotation counter configured to determine a number of turns made by a shaft, and an angular position sensor configured to measure an angular position of the shaft within a given turn. The number of turns can be determined with an M-bit resolution, and the angular position per turn can be measured with an N-bit resolution. Selected appropriately, the rotation counter can be configured to operate as a relatively low resolution; and yet the multi-turn sensing apparatus can maintain the N-bit per-turn angular resolution throughout the full range. Accordingly, the multi-turn sensing apparatus can have an effective resolution of M+N bits.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 17, 2013
    Applicant: BOURNS, INC.
    Inventors: Eugen Bogos, Perry Wehlman, Christopher Couch
  • Publication number: 20110175601
    Abstract: Disclosed are systems and methods for effectively sensing rotational position of an object. In certain embodiments, a rotational position sensor can include a shaft configured to couple with the rotating object. The shaft can be configured to couple with a magnet carrier such that rotation of the shaft yields translational motion of the carrier. A magnet mounted to the carrier also moves longitudinally with respect to the axis of the shaft, and relative to a magnetic field sensor configured to detect the magnet's longitudinal position. The detected longitudinal position can be in a range corresponding to a rotational range of the shaft, where the rotational range can be greater than one turn. In certain embodiments, the rotational position sensor can include a programmable capability to facilitate ease and flexibility in calibration and use in a wide range of applications.
    Type: Application
    Filed: January 18, 2010
    Publication date: July 21, 2011
    Applicant: BOURNS, INC.
    Inventors: Eugen Bogos, Perry Wehlman, Thanh Vinh Nguyen