Patents by Inventor Eugene A. Smith, Jr.

Eugene A. Smith, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8626058
    Abstract: A communications method for a vehicle consist comprising a lead vehicle having a first and second antenna associated with a respective first and second transceiver and a remote vehicle having a third and fourth antenna associated with a respective third and fourth transceiver. The method further comprises transmitting an outbound message from the first transceiver via the first antenna or from the second transceiver via the second antenna, the outbound message comprising a plurality of message bytes, receiving the outbound message at the third and fourth antennas and associated third and fourth transceivers, determining correct bytes and error bytes in the outbound message as received at the third transceiver, determining correct bytes and error bytes in the outbound message as received at the fourth transceiver, and assembling a reconstructed message using correct bytes from the message received at the third transceiver and the fourth transceiver.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: January 7, 2014
    Assignee: General Electric Company
    Inventors: Eugene A. Smith, Jr., David Michael Peltz, Robert C. Palanti
  • Publication number: 20120264370
    Abstract: A communications method for a vehicle consist comprising a lead vehicle having a first and second antenna associated with a respective first and second transceiver and a remote vehicle having a third and fourth antenna associated with a respective third and fourth transceiver. The method further comprises transmitting an outbound message from the first transceiver via the first antenna or from the second transceiver via the second antenna, the outbound message comprising a plurality of message bytes, receiving the outbound message at the third and fourth antennas and associated third and fourth transceivers, determining correct bytes and error bytes in the outbound message as received at the third transceiver, determining correct bytes and error bytes in the outbound message as received at the fourth transceiver, and assembling a reconstructed message using correct bytes from the message received at the third transceiver and the fourth transceiver.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 18, 2012
    Inventors: Eugene A. Smith, JR., David Michael Peltz, Robert C. Palanti
  • Patent number: 8229350
    Abstract: A communications method for a vehicle consist (10) comprising a lead vehicle (14) having a first (29A) and second (29B) antenna associated with a respective first (28A) and second (28B) transceiver and a remote vehicle (12A/12B/12C) having a third (29A) and fourth (29B) antenna associated with a respective third (28A) and fourth (28B) transceiver.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: July 24, 2012
    Assignee: General Electric Company
    Inventors: Eugene A. Smith, Jr., David Michael Peltz, Robert C. Palanti
  • Patent number: 8224237
    Abstract: A communications method for a vehicle consist (10) comprising a lead (14) and a remote (12A/12B/12C) powered vehicle, the lead (14) vehicle comprising first (29A) and second (29B) antennas each associated with a radio, and the remote vehicle (12A/12B/12C) comprising third (29A) and fourth (29B) antennas each associated with a radio. The method comprises transmitting an outbound message from the lead (14) vehicle, receiving the outbound message at the third antenna (29A) and supplying a signal to the associated radio for producing a first received signal, and receiving the outbound message at the fourth antenna (29B) and supplying a signal to the associated radio for producing a second received signal, determining a first and second signal quality metric for the respective first and second received signals, selecting the first or second received signal for processing by the remote vehicle (12A/12B/12C) in response to the first and second signal quality metrics.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: July 17, 2012
    Assignee: General Electric Company
    Inventors: Eugene A. Smith, Jr., David Michael Peltz, Robert C. Palanti
  • Publication number: 20110183605
    Abstract: A communications method for a vehicle consist (10) comprising a lead vehicle (14) having a first (29A) and second (29B) antenna associated with a respective first (28A) and second (28B) transceiver and a remote vehicle (12A/12B/12C) having a third (29A) and fourth (29B) antenna associated with a respective third (28A) and fourth (28B) transceiver.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: Eugene A. Smith, JR., David Michael Peltz, Robert C. Palanti
  • Publication number: 20100118988
    Abstract: A communications method for a vehicle consist (10) comprising a lead (14) and a remote (12A/12B/12C) powered vehicle, the lead (14) vehicle comprising first (29A) and second (29B) antennas each associated with a radio, and the remote vehicle (12A/12B/12C) comprising third (29A) and fourth (29B) antennas each associated with a radio. The method comprises transmitting an outbound message from the lead (14) vehicle, receiving the outbound message at the third antenna (29A) and supplying a signal to the associated radio for producing a first received signal, and receiving the outbound message at the fourth antenna (29B) and supplying a signal to the associated radio for producing a second received signal, determining a first and second signal quality metric for the respective first and second received signals, selecting the first or second received signal for processing by the remote vehicle (12A/12B/12C) in response to the first and second signal quality metrics.
    Type: Application
    Filed: January 25, 2010
    Publication date: May 13, 2010
    Inventors: Eugene A. Smith, JR., David Michael Peltz, Robert C. Palanti
  • Patent number: 7664459
    Abstract: A distributed power train (10) communications system for sending and receiving signals between a lead locomotive (14) and remote locomotives (12A/12B/12C) in the train (10). A lead (14) initiated message is received by at least the remote locomotive (12A/12B) nearest to the lead unit (14). The receiving remote unit (12A/12B) retransmits the message for receiving by the next remote unit (12C) in the train. Thus the message leapfrogs down the train from the lead unit (14) to the remote units (12A/12B/12C). When the last remote unit (the nth remote unit) (12C) receives the message, the last remote (12C) transmits a status or other response message to the lead unit's message. The status message is received at the (n-1)th remote unit (12A/12B), which appends its status message and transmits the combined status messages toward the lead unit (14).
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: February 16, 2010
    Assignee: General Electric Co.
    Inventors: Eugene A. Smith, Jr., David Michael Peltz, Robert C. Palanti
  • Patent number: 6824226
    Abstract: In a distributed power railroad train, an apparatus for equalizing the equalizing reservoir pressure in the remote power unit and the brake pipe pressure in response to airflow into the brake pipe from the remote locomotive. With these pressures equal, the remote unit cannot charge the brake pipe while the lead unit vents the brake pipe to command a brake application at the train railcars.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: November 30, 2004
    Assignee: General Electric Company
    Inventors: Eugene A. Smith, Jr., James M. Kiss, Jr., Robert C. Palanti
  • Patent number: 6443538
    Abstract: A method to facilitate reducing delays in braking applications in a train using a system. The system includes at least one computer for executing brake control functions of the train and a brake pipe that extends along a length of the train for supplying air for brake operations. The train includes a lead locomotive, at least one remote locomotive, and at least one railcar. The method includes sensing a change in airflow in the brake pipe, determining whether the change in air flow is desired, sensing brake pipe pressure, and filtering undesired fluctuations in brake pipe pressure during brake applications based on the determination of whether a change in airflow is desired.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: September 3, 2002
    Assignee: GE Harris Railway Electronics, LLC
    Inventors: Eugene A. Smith, Jr., Milt Deno, Don K. Johnson
  • Patent number: 6375275
    Abstract: A brake pipe overcharge detection scheme determines when an overcharge situation occurs followed by an interruption of the brake pipe slow pressure reduction process of the brake system assimilation. When the slow pressure reduction process is interrupted, the rail cars may be left in an overcharged state (i.e., the car braking system is charged to a pressure greater than the normal brake pipe pressure). When the brake pipe pressure is set to its normal brake-release value, the pressure of the car braking systems will be greater than the brake pipe pressure. The car braking system will interpret this positive pressure differential as a request to set the car brakes, and will therefore partially apply the car brakes. As a result, additional drag forces will be encountered by the locomotive as it moves the train, which may result in train separations, and overheating of the car brake shoes and wheels may result in cracked wheels and derailments.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: April 23, 2002
    Assignee: GE-Harris Railway Electronics, L.L.C.
    Inventors: Eugene A. Smith, Jr., Milton C. Deno, Don K. Johnson, Dale H. Delaruelle, Carl Hines
  • Patent number: 6095618
    Abstract: A train control system is for a train comprising at least first and second train segments including a brake pipe being separated between adjacent train segments. The train control system preferably comprises a first control subsystem for installation in a locomotive of the first train segment and a second control subsystem for installation in a locomotive of the second train segment. The first and second control subsystems communicate with one another for controlling train braking. The system also preferably includes a third control subsystem for installation in a railcar adjacent an end of the first train segment. This third control subsystem preferably includes at least one pressure transducer for sensing brake pipe pressure adjacent the end of the first train segment, and at least one control valve for controlling brake pipe pressure adjacent the end of the first train segment.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: August 1, 2000
    Assignee: GE-Harris Railway Electronics, L.L.C.
    Inventors: Steven P. Heneka, Andrew T. Powshok, Eugene A. Smith, Jr.
  • Patent number: 4946229
    Abstract: An adaptive brake control system monitors a plurality of brake pipe/air line parameters, such as fluid path volume and air flow rate, and controllably modifies action taken by the engineman or performs emergency control of the brakes, in order to continuously enable the brake system to adapt itself to dynamic operating conditions and anomalies in the integrity of the fluid path. In accordance with a pressure reduction modification mechanism, the application of a pressure reduction to the equalizing reservoir is precisely controlled by taking into account the actual state of the brake pipe, so as to ensure that the requested brake application is effected as intended. The control mechanism also monitors the integrity of the fluid flow path of the brake pipe/train air line, so that the engineman may be alerted and a prescribed train safety measure may be effected in the event of a potentially hazardous anomaly in the link.
    Type: Grant
    Filed: June 2, 1989
    Date of Patent: August 7, 1990
    Assignee: Harris Corporation
    Inventors: Milton C. Deno, Eugene A. Smith, Jr., Dale H. Delaruelle
  • Patent number: 4859000
    Abstract: An adaptive brake control system monitors a plurality of brake pipe/air line parameters, such as fluid path volume and air flow rate, and controllably modifies action taken by the engineman or performs emergency control of the brakes, in order to continuously enable the braking system to adapt itself to dynamic operating conditions and anomalies in the integrity of the fluid path. In accordance with a pressure reduction modification mechanism, the application of a pressure reduction to the equalizing reservoir is precisely controlled by taking into account the actual state of the brakepipe, so as to ensure that the requested brake application is effected as intended. The control mechanism also monitors the integrity of the fluid flow path of the brake pipe/train air line, so that the engineman may be alerted and a prescribed train safety measure may be effected in the event of a potentially hazardous anomaly in the link.
    Type: Grant
    Filed: August 15, 1988
    Date of Patent: August 22, 1989
    Assignee: Harris Corp.
    Inventors: Milton C. Deno, Eugene A. Smith, Jr., Dale H. Delaruelle