Patents by Inventor Eugene Boe

Eugene Boe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9808762
    Abstract: One embodiment of the present disclosure describes an industrial system, which includes a control system with a predictive emissions monitoring system that facilitates determining a chemical level output from a selective catalytic reduction unit that reduces the chemical level in gaseous emissions produced by a combustion source using a selective catalytic reduction model. The control system tunes the selective catalytic reduction model by determining tuning parameters based at least in part on vendor information and tuning data determined via a tuning sequence. The tuning sequence includes operating the combustion source at a plurality of load levels, injecting a reactant into received gaseous emissions at each of the plurality of load levels in accordance with an injection rate provided in the vendor information; and determining an input chemical level to and an output chemical level from the selective catalytic reduction unit at each of the plurality of load levels.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: November 7, 2017
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Walter Edgar Hayes, IV, Keith Alex Smith, Eugene Boe, Dennis Tzyy-nian Yieh
  • Publication number: 20160310896
    Abstract: One embodiment of the present disclosure describes an industrial system, which includes a control system. The control system includes a predictive emissions monitoring system that facilitates determining a chemical level output from a selective catalytic reduction unit that reduces the chemical level in gaseous emissions produced by a combustion source in the industrial system using a selective catalytic reduction model. The control system tunes the selective catalytic reduction model to the selective catalytic reduction unit by determining tuning parameters of the selective catalytic reduction model based at least in part on vendor information and tuning data determined via a tuning sequence.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Inventors: Walter Edgar Hayes, IV, Keith Alex Smith, Eugene Boe, Dennis Tzyy-nian Yieh
  • Patent number: 9329582
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 3, 2016
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Patent number: 8650009
    Abstract: A continuous emissions model system is described that employs an emissions model that can determine emissions values from a plant for use in place of sensed emission data in the event of failure or lack of communication from a sensor. The emissions model itself receives inputs that may be based upon sensed data. Each emissions model input may be substituted with a modeled input. The modeled inputs, as well as the emissions model outputs maybe biased to render them more accurate. If any one of the emissions model inputs fails (e.g., becomes unavailable or is clearly erroneous), the corresponding modeled input may be utilized so long as the modeled input passes an acceptability test.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 11, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: William Butler Forbes, Michael Eugene Sugars, Walter Edgar Hayes, IV, Eugene Boe, Scott Lawrence Jost, Richard Andrew Hovan, Keith Alex Smith
  • Patent number: 8577481
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: November 5, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Publication number: 20130055021
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Application
    Filed: September 10, 2012
    Publication date: February 28, 2013
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Patent number: 8311673
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: November 13, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Publication number: 20120053909
    Abstract: A continuous emissions model system is described that employs an emissions model that can determine emissions values from a plant for use in place of sensed emission data in the event of failure or lack of communication from a sensor. The emissions model itself receives inputs that may be based upon sensed data. Each emissions model input may be substituted with a modeled input. The modeled inputs, as well as the emissions model outputs maybe biased to render them more accurate. If any one of the emissions model inputs fails (e.g., becomes unavailable or is clearly erroneous), the corresponding modeled input may be utilized so long as the modeled input passes an acceptability test.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: William Butler Forbes, Michael Eugene Sugars, Walter Edgar Hayes, IV, Eugene Boe, Scott Lawrence Jost, Richard Andrew Hovan, Keith Alex Smith
  • Publication number: 20120022670
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Application
    Filed: October 6, 2011
    Publication date: January 26, 2012
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Patent number: 8036763
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: October 11, 2011
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Patent number: 7610108
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 27, 2009
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Publication number: 20090177291
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 9, 2009
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Patent number: 7496414
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: February 24, 2009
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Patent number: 7458428
    Abstract: A towed scraper control system automatically lowers the scraper blade to a working position at the start of a scraping operation according to a certain method. The method includes sensing a ground speed of the vehicle and sensing a draft force applied by the scraper to the vehicle. With the vehicle pulling the scraper at or near a target ground speed over terrain with the blade positioned above a surface of the ground, the blade is automatically lowered with respect to the scraper frame at a first rate until the blade begins to engage the surface of the ground. Thereafter, while the vehicle continues to move forward at or near the target ground speed, the blade is lowered with respect to the frame at a second rate and for a duration related to the sensed ground speed so that lowering of the blade stops when the scraper wheel begins to enter a cut produced by the blade.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: December 2, 2008
    Assignee: Deere & Company
    Inventors: Gregory Joseph Laudick, Derek Malcolm Eagles, William Guy Alexander, Jeffrey David Dawson, Thomas Eugene Boe
  • Patent number: 7418301
    Abstract: A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 26, 2008
    Assignee: Pavilion Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Publication number: 20080065241
    Abstract: A system and method for predicting operation of a plant or process receive an input value from the plant or process. An integrity of a non-linear model corresponding to a local input space of the input value may be determined. The non-linear model may include an empirical representation of the plant or process. If the integrity is above a first threshold, non-linear model may be used to provide a first output value. However, if the integrity is below the first threshold, a linearized first principles model may be used to provide a second output value. The linearized first principles model may include an analytic representation of the plant or process. Additionally, the analytic representation of the plant or process may be independent of the empirical representation of the plant or process. The first output value and/or the second output value may be usable to manage the plant or process.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 13, 2008
    Inventors: Eugene Boe, Gregory D. Martin, Stephen W. Piche
  • Patent number: 7142968
    Abstract: A method is provided for automatically determining a hitch raise rate calibration value for a hitch control system having a hydraulic actuator for moving the hitch, a valve for controlling flow of hydraulic fluid to the actuator and an electronic hitch control unit. The method includes applying a first control signal to the valve to cause the hitch to raise, determining a first hitch velocity as the hitch moves in response to the first control signal, and repeating these steps for a second control signal. The raise rate calibration value is then calculated as a function of a desired raise velocity, the first and second control signals and the first and second velocities.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: November 28, 2006
    Assignee: Deere & Company
    Inventors: William Guy Alexander, Thomas Eugene Boe, Derek Malcolm Eagles, Jianming Yu
  • Patent number: 7139619
    Abstract: A kiln thermal and combustion control. A predictive model is provided of the dynamics of selected aspects of the operation of the system for modeling the dynamics thereof. The model has at least two discrete models associated therewith that model at least two of the selected aspects, the at least two discrete models having different dynamic responses. An optimizer receives desired values for the selected aspects of the operation of the system modeled by the model and optimizes the inputs to the model to minimize error between the predicted and desired values. A control input device then applies the optimized input values to the system after optimization thereof.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 21, 2006
    Assignee: Pavilion Technologies, Inc.
    Inventors: Gregory D. Martin, Eugene Boe, Stephen Piche, James David Keeler, Douglas Timmer, Mark Gerules, John P. Havener, Steven J. McGarel
  • Publication number: 20060259197
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Application
    Filed: February 21, 2006
    Publication date: November 16, 2006
    Inventors: Eugene Boe, Stephen Piche, Gregory Martin
  • Publication number: 20060241786
    Abstract: A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    Type: Application
    Filed: February 21, 2006
    Publication date: October 26, 2006
    Inventors: Eugene Boe, Stephen Piche, Gregory Martin