Patents by Inventor Eugene M. Chow
Eugene M. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12224082Abstract: A microspring includes a film stack having a base disposed on a build plane and a spring member extending from the base. The film stack includes a compressive layer, a substantially stress-free layer, and a tensile layer. The film stack is formed of one or more materials that become superconducting below 140 K. A stress gradient in the film stack causes the spring member to curl away from the build plane of the base.Type: GrantFiled: February 9, 2023Date of Patent: February 11, 2025Assignee: Xerox CorporationInventors: Qian Wang, Christopher L. Chua, Yu Wang, Eugene M. Chow
-
Patent number: 12185642Abstract: A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising an elastic material and a superconductor film, releasing a portion of the elastic material by selective removal of the release film so that portion lifts out of the substrate plane to form elastic springs. A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising at least an elastic material, releasing a portion of the elastic material so that portion lifts out of a plane of the substrate to form elastic springs, and coating the elastic springs with a superconductor film.Type: GrantFiled: November 15, 2021Date of Patent: December 31, 2024Assignee: Xerox CorporationInventors: Christopher L. Chua, Eugene M. Chow
-
Patent number: 12115354Abstract: A device for delivery of particles into biological tissue includes at least one conduit and a propellant source fluidically coupled to the conduit and configured to deliver a propellant into the conduit. A particle source is configured to release elongated particles into the conduit, the elongated particles having a width, w, a length, l>w. The propellant source and the conduit are configured to propel the elongated particles in a collimated particle stream toward the biological tissue. An alignment mechanism is configured to align a longitudinal axis of the elongated particles to be substantially parallel to a direction of the particle stream in an alignment region of the conduit. The aligned elongated particles are ejected from the conduit and impact the biological tissue.Type: GrantFiled: August 2, 2021Date of Patent: October 15, 2024Assignee: Xerox CorporationInventors: David K. Biegelsen, Eugene M. Chow, Armin R. Volkel, Ashish Pattekar, Mandana Veiseh
-
Publication number: 20240274325Abstract: A microspring includes a film stack having a base disposed on a build plane and a spring member extending from the base. The film stack includes a compressive layer, a substantially stress-free layer, and a tensile layer. The film stack is formed of one or more materials that become superconducting below 140 K. A stress gradient in the film stack causes the spring member to curl away from the build plane of the base.Type: ApplicationFiled: February 9, 2023Publication date: August 15, 2024Inventors: Qian Wang, Christopher L. Chua, Yu Wang, Eugene M. Chow
-
Patent number: 12051610Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.Type: GrantFiled: March 27, 2023Date of Patent: July 30, 2024Assignee: Xerox CorporationInventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
-
Publication number: 20240242993Abstract: A micro-assembly system includes a reservoir that stores a supply of chiplets suspended in a suspension fluid. Each of the chiplets has a bottom major surface that defines a right side down orientation. The system includes a delivery surface or belt that delivers the chiplets from the reservoir to an assembly surface. The system includes a micro assembler that may arrange the first subset of the chiplets in a pattern on the assembly surface. The micro assembler moves the first subset of chiplets towards a subsequent assembly stage. The micro assembler has an array of field generators fixed relative to the assembly surface that move the first subset of the chiplets along the assembly surface in response to signals applied to each of the field generators.Type: ApplicationFiled: January 17, 2023Publication date: July 18, 2024Inventors: JengPing Lu, David K. Biegelsen, Sourobh Raychaudhuri, Bradley Rupp, Eugene M. Chow
-
Patent number: 11908782Abstract: An electronic assembly and methods of making the assembly are disclosed. The electronic assembly includes a substrate with an elastic member having an intrinsic stress profile. The elastic member has an anchor portion on the surface of the substrate; and a free end biased away from the substrate via the intrinsic stress profile to form an out of plane structure. The substrate includes one or more spacers on the substrate. The electronic assembly includes a chip comprising contact pads. The out of plane structure on the substrate touches corresponding contact pads on the chip, and the spacers on the substrate touch the chip forming a gap between the substrate and the chip.Type: GrantFiled: March 22, 2021Date of Patent: February 20, 2024Assignee: XEROX CORPORATIONInventors: Christopher L. Chua, Qian Wang, Yu Wang, Eugene M. Chow
-
Patent number: 11893327Abstract: System and method that allow utilize machine learning algorithms to move a micro-object to a desired position are described. A sensor such as a high speed camera or capacitive sensing, tracks the locations of the objects. A dynamic potential energy landscape for manipulating objects is generated by controlling each of the electrodes in an array of electrodes. One or more computing devices are used to: estimate an initial position of a micro-object using the sensor; generate a continuous representation of a dynamic model for movement of the micro-object due to electrode potentials generated by at least some of the electrodes and use automatic differentiation and Gauss quadrature rules on the dynamic model to derive optimum potentials to be generated by the electrodes to move the micro-object to the desired position; and map the calculated optimized electrode potentials to the array to activate the electrodes.Type: GrantFiled: December 14, 2020Date of Patent: February 6, 2024Assignee: XEROX CORPORATIONInventors: Ion Matei, Anne Plochowietz, Saigopal Nelaturi, Johan de Kleer, Jeng Ping Lu, Lara S. Crawford, Eugene M. Chow
-
Publication number: 20240036534Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.Type: ApplicationFiled: September 6, 2023Publication date: February 1, 2024Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
-
Publication number: 20230418273Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.Type: ApplicationFiled: September 1, 2023Publication date: December 28, 2023Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
-
Publication number: 20230369089Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.Type: ApplicationFiled: March 27, 2023Publication date: November 16, 2023Inventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
-
Publication number: 20230366093Abstract: Disclosed herein are techniques for transferring particles in a pattern. In one implementation, a particle-transferring system includes a first substrate comprising a first surface configured to support a plurality of particles in a non-uniform pattern, and a particle transfer unit configured to remove the plurality of particles from the first surface in response to the plurality of particles being within a first gap. The system also includes a second substrate configured to remove the plurality of particles from the particle transfer unit and secure the plurality of particles to the second surface in response to the plurality of particles being within a second gap. The particle transfer unit is configured to transfer the plurality of particles and maintain the non-uniform pattern regardless of the positions of the plurality of particles, which are not predefined to fit features of the particle transfer unit.Type: ApplicationFiled: July 12, 2023Publication date: November 16, 2023Inventors: Yunda Wang, Sourobh Raychaudhuri, JengPing Lu, Eugene M. Chow, Julie A. Bert, David Biegelsen, George A. Gibson, Jamie Kalb
-
Patent number: 11772964Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.Type: GrantFiled: February 4, 2022Date of Patent: October 3, 2023Assignee: Xerox CorporationInventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
-
Patent number: 11762348Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.Type: GrantFiled: May 21, 2021Date of Patent: September 19, 2023Assignee: XEROX CORPORATIONInventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
-
Patent number: 11747796Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.Type: GrantFiled: August 2, 2021Date of Patent: September 5, 2023Assignee: XEROX CORPORATIONInventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
-
Patent number: 11732362Abstract: Disclosed herein are implementations of a particles-transferring system, particle transferring unit, and method of transferring particles in a pattern. In one implementation, a particles-transferring system includes a first substrate including a first surface to support particles in a pattern, particle transferring unit including an outer surface to be offset from the first surface by a first gap, and second substrate including a second surface to be offset from the outer surface by a second gap. The particle transferring unit removes the particles from the first surface in response to the particles being within the first gap, secures the particles in the pattern to the outer surface, and transports the particles in the pattern. The second substrate removes the particles in the pattern from the particle transferring unit in response to the particles being within the second gap. The particles are to be secured in the pattern to the second surface.Type: GrantFiled: February 4, 2020Date of Patent: August 22, 2023Assignees: Xerox Corporation, Palo Alto Research Center IncorporatedInventors: Yunda Wang, Sourobh Raychaudhuri, JengPing Lu, Eugene M. Chow, Julie A. Bert, David Biegelsen, George A. Gibson, Jamie Kalb
-
Publication number: 20230187373Abstract: A method of forming a charge pattern on a microchip includes depositing a first material on an insulator surface of the microchip, depositing a material having capability of forming a self-assembled monolayer on the other material, wherein the material comprises at least one material selected from the group consisting of: octadecyltrichlorosilane, phenethyltrichlorosilane, hexamethyldisilazane, allyltrimethoxysilane, or perfluorooctyltrichlorosilanem, and patterning the self-assembled monolayer to reveal a portion of the first material.Type: ApplicationFiled: February 3, 2023Publication date: June 15, 2023Inventors: Eugene M. Chow, JenPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting, Sean E. Doris
-
Patent number: 11673800Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.Type: GrantFiled: February 2, 2022Date of Patent: June 13, 2023Assignee: Palo Alto Research Center IncorporatedInventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
-
Patent number: 11648762Abstract: A system includes a separation tool that separates a carrier wafer to form a plurality of chiplet carriers. The carrier wafer having sheets of thin film material attached. A sensor and processor of the system determine an orientation of the portions of the sheets of thin film material relative to the chiplets to determine a mapping therebetween. A fluid carrier of the system places the chiplet carriers on an assembly surface in a disordered pattern. The system includes a micro assembler that arranges the chiplet carriers from the disordered pattern to a predetermined pattern based on the mapping. A carrier of the system transfers the portions of the thin film material from the chiplet carriers to a target substrate.Type: GrantFiled: August 17, 2022Date of Patent: May 16, 2023Assignee: Palo Alto Research Center IncorporatedInventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri
-
Patent number: 11615976Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.Type: GrantFiled: March 9, 2022Date of Patent: March 28, 2023Assignee: Palo Alto Research Center IncorporatedInventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen