Patents by Inventor Eugene M. Chow

Eugene M. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908782
    Abstract: An electronic assembly and methods of making the assembly are disclosed. The electronic assembly includes a substrate with an elastic member having an intrinsic stress profile. The elastic member has an anchor portion on the surface of the substrate; and a free end biased away from the substrate via the intrinsic stress profile to form an out of plane structure. The substrate includes one or more spacers on the substrate. The electronic assembly includes a chip comprising contact pads. The out of plane structure on the substrate touches corresponding contact pads on the chip, and the spacers on the substrate touch the chip forming a gap between the substrate and the chip.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 20, 2024
    Assignee: XEROX CORPORATION
    Inventors: Christopher L. Chua, Qian Wang, Yu Wang, Eugene M. Chow
  • Patent number: 11893327
    Abstract: System and method that allow utilize machine learning algorithms to move a micro-object to a desired position are described. A sensor such as a high speed camera or capacitive sensing, tracks the locations of the objects. A dynamic potential energy landscape for manipulating objects is generated by controlling each of the electrodes in an array of electrodes. One or more computing devices are used to: estimate an initial position of a micro-object using the sensor; generate a continuous representation of a dynamic model for movement of the micro-object due to electrode potentials generated by at least some of the electrodes and use automatic differentiation and Gauss quadrature rules on the dynamic model to derive optimum potentials to be generated by the electrodes to move the micro-object to the desired position; and map the calculated optimized electrode potentials to the array to activate the electrodes.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: February 6, 2024
    Assignee: XEROX CORPORATION
    Inventors: Ion Matei, Anne Plochowietz, Saigopal Nelaturi, Johan de Kleer, Jeng Ping Lu, Lara S. Crawford, Eugene M. Chow
  • Publication number: 20240036534
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Application
    Filed: September 6, 2023
    Publication date: February 1, 2024
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Publication number: 20230418273
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 28, 2023
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Publication number: 20230369089
    Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.
    Type: Application
    Filed: March 27, 2023
    Publication date: November 16, 2023
    Inventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
  • Publication number: 20230366093
    Abstract: Disclosed herein are techniques for transferring particles in a pattern. In one implementation, a particle-transferring system includes a first substrate comprising a first surface configured to support a plurality of particles in a non-uniform pattern, and a particle transfer unit configured to remove the plurality of particles from the first surface in response to the plurality of particles being within a first gap. The system also includes a second substrate configured to remove the plurality of particles from the particle transfer unit and secure the plurality of particles to the second surface in response to the plurality of particles being within a second gap. The particle transfer unit is configured to transfer the plurality of particles and maintain the non-uniform pattern regardless of the positions of the plurality of particles, which are not predefined to fit features of the particle transfer unit.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Inventors: Yunda Wang, Sourobh Raychaudhuri, JengPing Lu, Eugene M. Chow, Julie A. Bert, David Biegelsen, George A. Gibson, Jamie Kalb
  • Patent number: 11772964
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: October 3, 2023
    Assignee: Xerox Corporation
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11762348
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: September 19, 2023
    Assignee: XEROX CORPORATION
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Patent number: 11747796
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: September 5, 2023
    Assignee: XEROX CORPORATION
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11732362
    Abstract: Disclosed herein are implementations of a particles-transferring system, particle transferring unit, and method of transferring particles in a pattern. In one implementation, a particles-transferring system includes a first substrate including a first surface to support particles in a pattern, particle transferring unit including an outer surface to be offset from the first surface by a first gap, and second substrate including a second surface to be offset from the outer surface by a second gap. The particle transferring unit removes the particles from the first surface in response to the particles being within the first gap, secures the particles in the pattern to the outer surface, and transports the particles in the pattern. The second substrate removes the particles in the pattern from the particle transferring unit in response to the particles being within the second gap. The particles are to be secured in the pattern to the second surface.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: August 22, 2023
    Assignees: Xerox Corporation, Palo Alto Research Center Incorporated
    Inventors: Yunda Wang, Sourobh Raychaudhuri, JengPing Lu, Eugene M. Chow, Julie A. Bert, David Biegelsen, George A. Gibson, Jamie Kalb
  • Publication number: 20230187373
    Abstract: A method of forming a charge pattern on a microchip includes depositing a first material on an insulator surface of the microchip, depositing a material having capability of forming a self-assembled monolayer on the other material, wherein the material comprises at least one material selected from the group consisting of: octadecyltrichlorosilane, phenethyltrichlorosilane, hexamethyldisilazane, allyltrimethoxysilane, or perfluorooctyltrichlorosilanem, and patterning the self-assembled monolayer to reveal a portion of the first material.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Eugene M. Chow, JenPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting, Sean E. Doris
  • Patent number: 11673800
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: June 13, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11648762
    Abstract: A system includes a separation tool that separates a carrier wafer to form a plurality of chiplet carriers. The carrier wafer having sheets of thin film material attached. A sensor and processor of the system determine an orientation of the portions of the sheets of thin film material relative to the chiplets to determine a mapping therebetween. A fluid carrier of the system places the chiplet carriers on an assembly surface in a disordered pattern. The system includes a micro assembler that arranges the chiplet carriers from the disordered pattern to a predetermined pattern based on the mapping. A carrier of the system transfers the portions of the thin film material from the chiplet carriers to a target substrate.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: May 16, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri
  • Patent number: 11615976
    Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: March 28, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
  • Patent number: 11574876
    Abstract: A method of forming a charge pattern on a microchip includes depositing a material on the surface of the microchip, and immersing the microchip in a fluid to develop charge in or on the material through interaction with the surrounding fluid.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 7, 2023
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, JenPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting, Sean E. Doris
  • Patent number: 11527420
    Abstract: A release layer is formed on a surface of an integrated circuit wafer. The surface is passivated and includes metal contact materials. A stress-engineered film having an intrinsic stress profile is deposited over the release layer. The stress-engineered film is patterned and the release layer is undercut etched so that a released portion of the patterned stress-engineered film is released from the surface while leaving an anchor portion fixed to the surface. The intrinsic stress profile in the stress-engineered film biases the released portion away from the surface. The released portion is placed entirely within an area defined by the metal contact material.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: December 13, 2022
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher L. Chua, Qian Wang, Eugene M. Chow
  • Publication number: 20220388295
    Abstract: A system includes a separation tool that separates a carrier wafer to form a plurality of chiplet carriers. The carrier wafer having sheets of thin film material attached. A sensor and processor of the system determine an orientation of the portions of the sheets of thin film material relative to the chiplets to determine a mapping therebetween. A fluid carrier of the system places the chiplet carriers on an assembly surface in a disordered pattern. The system includes a micro assembler that arranges the chiplet carriers from the disordered pattern to a predetermined pattern based on the mapping. A carrier of the system transfers the portions of the thin film material from the chiplet carriers to a target substrate.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri
  • Publication number: 20220382227
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 1, 2022
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Publication number: 20220301996
    Abstract: An electronic assembly and methods of making the assembly are disclosed. The electronic assembly includes a substrate with an elastic member having an intrinsic stress profile. The elastic member has an anchor portion on the surface of the substrate; and a free end biased away from the substrate via the intrinsic stress profile to form an out of plane structure. The substrate includes one or more spacers on the substrate. The electronic assembly includes a chip comprising contact pads. The out of plane structure on the substrate touches corresponding contact pads on the chip, and the spacers on the substrate touch the chip forming a gap between the substrate and the chip.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Christopher L. Chua, Qian Wang, Yu Wang, Eugene M. Chow
  • Publication number: 20220301891
    Abstract: A release layer is formed on a surface of an integrated circuit wafer. The surface is passivated and includes metal contact materials. A stress-engineered film having an intrinsic stress profile is deposited over the release layer. The stress-engineered film is patterned and the release layer is undercut etched so that a released portion of the patterned stress-engineered film is released from the surface while leaving an anchor portion fixed to the surface. The intrinsic stress profile in the stress-engineered film biases the released portion away from the surface. The released portion is placed entirely within an area defined by the metal contact material.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Christopher L. Chua, Qian Wang, Eugene M. Chow