Patents by Inventor Eugene Michael Berdichevsky

Eugene Michael Berdichevsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100136409
    Abstract: The adverse effects of the dielectric material covering the cylindrical case of a conventional 18650 cell are eliminated by replacing it with a ring-shaped dielectric material, wherein the ring-shaped dielectric material does not extend down or otherwise cover the cylindrical outer surface of the cell's casing. The ring-shaped dielectric material provides access to the battery terminal corresponding to the cap assembly while preventing shorting between the battery terminal and the edge of the cell casing.
    Type: Application
    Filed: March 30, 2009
    Publication date: June 3, 2010
    Applicant: Tesla Motors, Inc.
    Inventors: Jeffrey Brian Straubel, Eugene Michael Berdichevsky, David Frederick Lyons, Robert Ferber
  • Patent number: 7683575
    Abstract: A method and apparatus for deactivating a bad battery cell from a battery pack for an energy storage system of an electric vehicle is disclosed. The apparatus and methodology includes a clamshell member arranged at an end of the cells and a printed circuit board arranged adjacent to the clamshell member. A collector plate is arranged adjacent to the printed circuit board and a switch is arranged on the printed circuit board. A wire bond is arranged between the switch and one of the cells and a second wire bond is arranged between the switch and the collector plate. The plurality of switches will allow for the identification of the one individual cell having a weak short circuit within the battery pack. Upon identification of the cell with the weak short circuit that cell will have its switch placed in an open position thus electrically isolating the faulty or bad cell from the battery pack.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 23, 2010
    Assignee: Tesla Motors, Inc.
    Inventors: Eugene Michael Berdichevsky, Kurt Russell Kelty, Scott Ira Kohn
  • Patent number: 7671567
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 2, 2010
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090315698
    Abstract: Systems and methods for diagnosing battery voltage misreporting is described. According to various embodiments, battery voltage may be monitored with respect to a state of charge and/or time. Based on this monitored information, battery charge state data may be generated by computing time derivatives of the monitored battery voltage across a voltage range. This battery charge state data may be compared with an expected set of charge state data if substantial differences exist, an error may be generated. Other embodiments are described and claimed.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Inventors: Eugene Michael Berdichevsky, Philip David Cole, James Jay Dunlay
  • Patent number: 7629772
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 8, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Patent number: 7629773
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 8, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Patent number: 7622897
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 24, 2009
    Assignee: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090243538
    Abstract: Some embodiments include a system, that includes an electric motor coupled to propel an electrical vehicle, a battery coupled to power the motor, a preheating system coupled to preheat the battery, a battery temperature comparator to compare a temperature of the battery to a target preheated temperature and to provide a battery below temperature signal when the battery temperature is below a specified temperature, a control circuit to determine the time remaining prior to a scheduled drive start time and to provide a preheating enable signal during a target time interval prior to the scheduled drive start time and a further control circuit to operate the preheating system in response to the battery below temperature signal and the preheating enable signal.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Inventors: Kurt Russell Kelty, Weston Arthur Hermann, Eugene Michael Berdichevsky
  • Publication number: 20090212745
    Abstract: One embodiment of the present subject matter includes a system that includes a battery, an electric vehicle, the battery coupled to the electric vehicle to propel the electric vehicle, and a charging circuit to charge the battery. The embodiment includes a charging cost circuit to estimate a charging cost rate and to turn on the charging circuit. The embodiment also includes a timer circuit to provide a time signal to the charging cost circuit. The embodiment is configured such that the charging cost circuit is to turn on the charging circuit during a first time period in which the charging cost rate is below a first threshold until the battery reaches a first energy stored level, and to turn on the charging circuit during a second time period in which the charging cost rate is above the first threshold.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Eugene Michael Berdichevsky
  • Publication number: 20090216688
    Abstract: One embodiment of the present subject matter includes a system that includes a battery, an electric vehicle, the battery coupled to the electric vehicle to propel the electric vehicle, and a charging circuit to charge the battery. The embodiment includes a charging cost circuit to estimate a charging cost rate and to turn on the charging circuit. The embodiment also includes a timer circuit to provide a time signal to the charging cost circuit. The embodiment is configured such that the charging cost circuit is to turn on the charging circuit during a first time period in which the charging cost rate is below a first threshold until the battery reaches a first energy stored level, and to turn on the charging circuit during a second time period in which the charging cost rate is above the first threshold.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Eugene Michael Berdichevsky
  • Publication number: 20090167254
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 2, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090140698
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Application
    Filed: January 29, 2009
    Publication date: June 4, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090143929
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Application
    Filed: January 29, 2009
    Publication date: June 4, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090140700
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Application
    Filed: January 16, 2009
    Publication date: June 4, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090023053
    Abstract: A method and apparatus for deactivating a bad battery cell from a battery pack for an energy storage system of an electric vehicle is disclosed. The apparatus and methodology includes a clamshell member arranged at an end of the cells and a printed circuit board arranged adjacent to the clamshell member. A collector plate is arranged adjacent to the printed circuit board and a switch is arranged on the printed circuit board. A wire bond is arranged between the switch and one of the cells and a second wire bond is arranged between the switch and the collector plate. The plurality of switches will allow for the identification of the one individual cell having a weak short circuit within the battery pack. Upon identification of the cell with the weak short circuit that cell will have its switch placed in an open position thus electrically isolating the faulty or bad cell from the battery pack.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Applicant: TESLA MOTORS, INC.
    Inventors: Eugene Michael Berdichevsky, Kurt Russell Kelty, Scott Ira Kohn
  • Publication number: 20090024256
    Abstract: A system for managing battery temperature is described. The system may include a cooling system which may include a fluid. A cabin circulation subsystem may be coupled to the cooling subsystem and may utilize the fluid for cabin cooling. A separate battery circulation subsystem may also may also be coupled to the cooling subsystem so that it may additionally utilize the fluid for battery cooling. A control may be present in order to regulate movement of the fluid to the cabin circulation subsystem and/or to the battery circulation subsystem.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Inventors: Daniel Thomas Adams, David Frederick Lyons, Philip Wayne Luk, Eugene Michael Berdichevsky, Jeffrey Brian Straubel
  • Publication number: 20090021218
    Abstract: One embodiment of the present subject matter includes a system that includes a battery, an electric vehicle, the battery coupled to the electric vehicle to propel the electric vehicle, and a charging circuit to charge the battery. The embodiment includes a charging cost circuit to estimate a charging cost rate and to turn on the charging circuit. The embodiment also includes a timer circuit to provide a time signal to the charging cost circuit. The embodiment is configured such that the charging cost circuit is to turn on the charging circuit during a first time period in which the charging cost rate is below a first threshold until the battery reaches a first energy stored level, and to turn on the charging circuit during a second time period in which the charging cost rate is above the first threshold.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Inventors: Kurt Russell Kelty, Eugene Michael Berdichevsky
  • Publication number: 20090023060
    Abstract: One embodiment includes a bottom clamshell and a top clamshell sandwiching a first battery and a second battery, with a fill port extending from a top surface of the top clamshell through to the bottom surface of the top clamshell and to a space between the first and second batteries. The embodiment includes a protrusion coupled to the top clamshell proximate to the fill port and extending into the space, wherein the protrusion at least partially occludes a direct path through the fill port to the space.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Inventors: Ernest Matthew Villanueva, Brian Charles Hewett, William Vucich Beecher, Dorian Watkins West, Scott Ira Kohn, Eugene Michael Berdichevsky
  • Patent number: 7433794
    Abstract: A method of mitigating propagation of a thermal event in an energy storage system having a plurality of cells is disclosed. The method includes the steps of identifying the heat sources within the energy storage system and plurality of cells. The method then controls a temperature of the energy storage system and plurality of cells and also detects predetermined conditions within the energy storage system. The method then performs a predetermined action based on when one of the predetermined conditions is detected. A plurality of sensors and switches along with associated hardware or software will be used to control the temperature of the energy storage system upon detection of predetermined conditions involving overheating, over current, over voltage of the like.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: October 7, 2008
    Assignee: Tesla Motors, Inc.
    Inventors: Eugene Michael Berdichevsky, Philip David Cole, Arthur Joseph Hebert, Weston Arthur Hermann, Kurt Russell Kelty, Scott Ira Kohn, David Frederick Lyons, Jeffrey Brian Straubel, Noel Jason Mendez