Patents by Inventor Eugene Rabinovich

Eugene Rabinovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11721205
    Abstract: A method is provided that includes: receiving a plurality of estimated position points, each estimated position point including a timestamp, where each estimated position point is an estimate of a position of a vehicle at a time respective timestamp; receiving on or more path events, where each of the one or more path events includes a timestamp and data from at least one sensor of the vehicle; generating a path from the plurality of estimated position points, where the estimated position points are arranged in order of ascending time represented by the respective timestamp; and interpolating between two of the estimated position points to determine a location corresponding to one of the one or more path events, where the timestamp of the one of the one or more path event corresponds to a time that is between the times represented by the timestamps of the two estimated position points.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: August 8, 2023
    Assignee: HERE GLOBAL B.V.
    Inventors: Leo Modica, Chris Palm, Kaushik Vakharia, Eric Linder, Dejan Milojkovic, Eugene Rabinovich, Dietmar Rabel, Prokop Jehlicka, Harini Anand, Dave Furchtgott, Catalin Capota
  • Publication number: 20220399499
    Abstract: A method for providing a substrate coating comprises transferring a substrate to an enclosed ink jet printing system; printing organic material in a deposition region of the substrate using the enclosed ink jet printing system, the deposition region comprising at least a portion of an active region of a light-emitting device on the substrate; loading the substrate with the organic material deposited thereon to an enclosed curing module; supporting the substrate in the enclosed curing module, the supporting the substrate comprising floating the substrate on a gas cushion established by a floatation support apparatus; and while supporting the substrate in the enclosed curing module, curing the organic material deposited on the substrate to form an organic film layer.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 15, 2022
    Applicant: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 11489119
    Abstract: A method for providing a substrate coating comprises transferring a substrate to an enclosed ink jet printing system; printing organic material in a deposition region of the substrate using the enclosed ink jet printing system, the deposition region comprising at least a portion of an active region of a light-emitting device on the substrate; loading the substrate with the organic material deposited thereon to an enclosed curing module; supporting the substrate in the enclosed curing module, the supporting the substrate comprising floating the substrate on a gas cushion established by a floatation support apparatus; and while supporting the substrate in the enclosed curing module, curing the organic material deposited on the substrate to form an organic film layer.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 1, 2022
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 11338319
    Abstract: A method of forming a material layer on a substrate comprises loading a substrate into a printing zone of a coating system using a substrate handler, printing an organic ink material on a substrate while the substrate is located in the printing zone, transferring the substrate from the printing zone to a treatment zone of the coating system, treating the organic ink material deposited on the substrate in the treatment zone to form a film layer on the substrate, and removing the substrate from the treatment zone using the substrate handler.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 24, 2022
    Assignee: KATEEVA, INC.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 10537911
    Abstract: A coating can be provided on a substrate. Fabrication of the coating can include forming a solid layer in a specified region of the substrate while supporting the substrate in a coating system using a gas cushion. For example, a liquid coating can be printed over the specified region while the substrate is supported by the gas cushion. The substrate can be held for a specified duration after the printing the patterned liquid. The substrate can be conveyed to a treatment zone while supported using the gas cushion. The liquid coating can be treated to provide the solid layer including continuing to support the substrate using the gas cushion.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 21, 2020
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20200009597
    Abstract: A method for providing a substrate coating comprises transferring a substrate to an enclosed ink jet printing system; printing organic material in a deposition region of the substrate using the enclosed ink jet printing system, the deposition region comprising at least a portion of an active region of a light-emitting device on the substrate; loading the substrate with the organic material deposited thereon to an enclosed curing module; supporting the substrate in the enclosed curing module, the supporting the substrate comprising floating the substrate on a gas cushion established by a floatation support apparatus; and while supporting the substrate in the enclosed curing module, curing the organic material deposited on the substrate to form an organic film layer.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Applicant: KATEEVA, INC.
    Inventors: Alexander Sou-Kang KO, Justin MAUCK, Eliyahu VRONSKY, Conor F. MADIGAN, Eugene RABINOVICH, Nahid HARJEE, Christopher BUCHNER, Gregory LEWIS
  • Publication number: 20190388928
    Abstract: A method of forming a material layer on a substrate comprises loading a substrate into a printing zone of a coating system using a substrate handler, printing an organic ink material on a substrate while the substrate is located in the printing zone, transferring the substrate from the printing zone to a treatment zone of the coating system, treating the organic ink material deposited on the substrate in the treatment zone to form a film layer on the substrate, and removing the substrate from the treatment zone using the substrate handler.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 26, 2019
    Applicant: KATEEVA, INC.
    Inventors: Alexander Sou-Kang KO, Justin MAUCK, Eliyahu VRONSKY, Conor F. MADIGAN, Eugene RABINOVICH, Nahid HARJEE, Christopher BUCHNER, Gregory LEWIS
  • Patent number: 10512931
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: December 24, 2019
    Assignee: KATEEVA, INC.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20170358204
    Abstract: A method is provided that includes: receiving a plurality of estimated position points, each estimated position point including a timestamp, where each estimated position point is an estimate of a position of a vehicle at a time respective timestamp; receiving on or more path events, where each of the one or more path events includes a timestamp and data from at least one sensor of the vehicle; generating a path from the plurality of estimated position points, where the estimated position points are arranged in order of ascending time represented by the respective timestamp; and interpolating between two of the estimated position points to determine a location corresponding to one of the one or more path events, where the timestamp of the one of the one or more path event corresponds to a time that is between the times represented by the timestamps of the two estimated position points.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventors: Leo Modica, Chris Palm, Kaushik Vakharia, Eric Linder, Dejan Milojkovic, Eugene Rabinovich, Dietmar Rabel, Prokop Jehlicka, Harini Anand, Dave Furchtgott, Catalin Capota
  • Publication number: 20170232462
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 17, 2017
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20170189935
    Abstract: A coating can be provided on a substrate. Fabrication of the coating can include forming a solid layer in a specified region of the substrate while supporting the substrate in a coating system using a gas cushion. For example, a liquid coating can be printed over the specified region while the substrate is supported by the gas cushion. The substrate can be held for a specified duration after the printing the patterned liquid. The substrate can be conveyed to a treatment zone while supported using the gas cushion. The liquid coating can be treated to provide the solid layer including continuing to support the substrate using the gas cushion.
    Type: Application
    Filed: January 27, 2017
    Publication date: July 6, 2017
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 9586226
    Abstract: A coating can be provided on a substrate. Fabrication of the coating can include forming a solid layer in a specified region of the substrate while supporting the substrate in a coating system using a gas cushion. For example, a liquid coating can be printed over the specified region while the substrate is supported by the gas cushion. The substrate can be held for a specified duration after the printing the patterned liquid. The substrate can be conveyed to a treatment zone while supported using the gas cushion. The liquid coating can be treated to provide the solid layer including continuing to support the substrate using the gas cushion.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: March 7, 2017
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 9579905
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 28, 2017
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20160159113
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Application
    Filed: February 18, 2016
    Publication date: June 9, 2016
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 9343678
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: May 17, 2016
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20150314325
    Abstract: A coating can be provided on a substrate. Fabrication of the coating can include forming a solid layer in a specified region of the substrate while supporting the substrate in a coating system using a gas cushion. For example, a liquid coating can be printed over the specified region while the substrate is supported by the gas cushion. The substrate can be held for a specified duration after the printing the patterned liquid. The substrate can be conveyed to a treatment zone while supported using the gas cushion. The liquid coating can be treated to provide the solid layer including continuing to support the substrate using the gas cushion.
    Type: Application
    Filed: April 27, 2015
    Publication date: November 5, 2015
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20150259786
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 8216441
    Abstract: Embodiments of the invention provide a novel apparatus and methods for forming a contact structure having metal lines formed using an electrophoretic deposition process. A substrate having a conductive or semiconductive layer is covered with an insulating layer and patterned to expose the conductive or semiconductive layer. The substrate is exposed to a processing medium comprising charged particles immersed in a dielectric fluid. An electric field is optionally applied. The charged particles deposit onto the exposed portions of the substrate and are then solidified in a reflow process.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Manoocher Birang, Kapila P. Wijekoon, Alexander Sou-Kang Ko, Eugene Rabinovich
  • Publication number: 20090145760
    Abstract: Embodiments of the invention provide a novel apparatus and methods for forming a contact structure having metal lines formed using an electrophoretic deposition process. A substrate having a conductive or semiconductive layer is covered with an insulating layer and patterned to expose the conductive or semiconductive layer. The substrate is exposed to a processing medium comprising charged particles immersed in a dielectric fluid. An electric field is optionally applied. The charged particles deposit onto the exposed portions of the substrate and are then solidified in a reflow process.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Inventors: MANOOCHER BIRANG, Kapila P. Wijekoon, Alexander Sou-Kang Ko, Eugene Rabinovich
  • Patent number: 7473339
    Abstract: Embodiments of the invention generally provide a fluid delivery system for an electrochemical plating platform. The fluid delivery system is configured to supply multiple chemistries to multiple plating cells with minimal bubble formation in the fluid delivery system. The system includes a solution mixing system, a fluid distribution manifold in communication with the solution mixing system, a plurality of fluid conduits in fluid communication with the fluid distribution manifold, and a plurality of fluid tanks, each of the plurality of fluid tanks being in fluid communication with at least one of the plurality of fluid conduits.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: January 6, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Allen L. D'Ambra, Arulkumar Shanmugasundram, Michael X. Yang, Yevgeniy (Eugene) Rabinovich, Dmitry Lubomirsky