Patents by Inventor Eugene Tu

Eugene Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140174931
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Biological Dynamics, Inc.
    Inventors: Rajaram KRISHNAN, David CHARLOT, Eugene TU, James MCCANNA, Lucas KUMOSA, Paul SWANSON, Robert TURNER, Kai YANG, Irina DOBROVOLSKAYA
  • Publication number: 20140127697
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicant: Biological Dynamics, Inc.
    Inventors: Rajaram KRISHNAN, David CHARLOT, Eugene TU, James MCCANNA, Lucas KUMOSA, Paul SWANSON, Robert TURNER, Kai YANG, Irina DOBROVOLSKAYA, David LIU
  • Patent number: 8698031
    Abstract: Among other things, for use in directional motion of chiral objects in a mixture, a field is applied across the chamber and is rotating relative to the chamber to cause rotation of the chiral objects. The rotation of the objects causes them to move directionally based on their chirality. The method applies to sugars, proteins, and peptides, among other things, and can be used in a wide variety of applications.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 15, 2014
    Assignee: Dynamic Connections, LLC
    Inventors: Osman Kibar, Mirianas Chachisvilis, Eugene Tu, Thomas H. Marsilje
  • Patent number: 8691164
    Abstract: Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on a switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format. Optical and/or fluidic switching forces are used alone or in combination to effect switching.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 8, 2014
    Assignee: Celula, Inc.
    Inventors: William Frank Butler, Haichuan Zhang, Philippe Marchand, Keunho Ahn, Yi Zhang, John Francis, Benjamin Lai, Eugene Tu
  • Patent number: 8603791
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: December 10, 2013
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Publication number: 20130273640
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 17, 2013
    Applicant: Biological Dynamics, Inc.
    Inventors: Rajaram KRISHNAN, David CHARLOT, Eugene TU, James MCCANNA, Lucas KUMOSA, Paul SWANSON, Robert TURNER, Kai YANG, Irina DOBROVOLSKAYA, David LIU
  • Patent number: 8425745
    Abstract: Sensor devices, methods and kits for detection of biomolecules are provided. According to various embodiments, the devices, methods and kits provide enhanced sensitivity through the measurement of electrochemical impedance and related properties. Certain embodiments employ nanostructured electrode elements including nanotubes, nanoparticles, nanowires, and nanocones. In a particular embodiment, single walled carbon nanotubes disposed in interconnected networks are used as electrodes. The device, methods and kits described herein have application for detection and measurement of biomolecular species including polynucleotides, proteins, polysaccharides and the like.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 23, 2013
    Assignee: Nanomix, Inc.
    Inventors: Mikhail Briman, Ray Radtkey, Eugene Tu, Christian Valcke
  • Patent number: 8426209
    Abstract: Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on an optical switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 23, 2013
    Assignee: Celula, Inc.
    Inventors: William Frank Butler, Mirianas Chachisvilis, Robert Dees, Norbert Hagen, Philippe Marchand, Daniel E. Raymond, Eugene Tu, Mark M. Wang, Joon Mo Yang, Rong Yang, Haichuan Zhang
  • Publication number: 20130075794
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Application
    Filed: April 10, 2012
    Publication date: March 28, 2013
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Patent number: 8389212
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 5, 2013
    Assignee: Gamida for Life, B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 8313940
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 20, 2012
    Assignee: Gamida For Life B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Publication number: 20120263828
    Abstract: A method of stabilizing nutritional drinks, and the stabilized drink, including the steps of forming edible oil microparticles, dissolving polyphenol concentrate in a liquid, and associating the polyphenol from the concentrate with the microparticles in the liquid to prevent free radicals from reaching the surface of the microparticles.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Inventors: Donald E. Ackley, Eugene Tu
  • Patent number: 8154093
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: April 10, 2012
    Assignee: Nanomix, Inc.
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Publication number: 20120077191
    Abstract: Described herein are compositions and methods useful for the detection of nucleic acid variations. Ligation within a probe or between probes is used to distinguish between probes perfectly complementary to a target and those containing a mismatch. Nucleotide fill-in/extension steps are optionally applied according to the type of assay performed. A circularization and relinearization step can be applied to create a template for further amplification and detection. In certain aspects, portions of a target sequence or its complement are not amplified.
    Type: Application
    Filed: August 11, 2011
    Publication date: March 29, 2012
    Applicant: CELULA, INC.
    Inventors: KERRY GUNNING, KURT A. KRUMMEL, RUSSEL BALDOCCHI, YI ZHANG, RAMA GHATTI, HAICHUAN ZHANG, EUGENE TU, ANDREW S. KATZ
  • Patent number: 8114589
    Abstract: A method for electronically stabilizing hybridization of nucleic acids bound at a test site of a microelectronic device is described. First and second negatively charged nucleic acids are provided, the second nucleic acid being bound to the test site. A zwitterionic buffer having a conductance of less than 100 mS/cm is applied to the microelectronic device. A current is applied to the test site to positively bias the test site, such that the first negatively charged nucleic acid is transported to the positively biased test site having the bound the second negatively charged nucleic acid. At the test site, the first and second negatively charged nucleic acids hybridize. The zwitterionic buffer acquires a net positive charge under influence of the current, such that the positively charged zwitterionic buffer stabilizes the hybridization by reducing the repulsion between the first and second negatively charged nucleic acids.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: February 14, 2012
    Assignee: Gamida For Life B.V.
    Inventors: Ronald G. Sosnowski, William F. Butler, Eugene Tu, Michael I. Nerenberg, Michael J. Heller, Carl F. Edman
  • Publication number: 20110132812
    Abstract: Among other things, to cause directional motion of chiral objects in a mixture in a chamber, a field is rotated relative to a chamber to cause rotation of the chiral objects. The rotation of the objects causes them to move directionally based on their chirality.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 9, 2011
    Inventors: Osman Kibar, Mirianas Chachisvilis, Eugene Tu
  • Patent number: 7947486
    Abstract: A method for analyzing nucleic acid obtained from a cell sample on a platform is described. A platform having a cell selector, a nucleic acid selector, and an array of microlocations, wherein at least one microlocation has an associated capture sequence, is provided. The cell selector is contacted with a cell sample, wherein a portion of the cells remain associated with the cell selector. At least a portion of cells associated with the cell selector are lysed to release a nucleic acid sample. The nucleic acid selector is then contacted with the nucleic acid sample, such that a portion of the nucleic acid sample remains associated with the nucleic acid selector. The associated nucleic acid sample is then released from the nucleic acid selector and then is contacted with the array of microlocations, such that at least a portion of the released nucleic acid sample hybridizes with the capture sequence.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: May 24, 2011
    Assignee: Gamida for Life B.V.
    Inventors: Michael J. Heller, Eugene Tu, Glen A. Evans, Ronald G. Sosnowski
  • Patent number: 7935906
    Abstract: Among other things, to cause directional motion of chiral objects in a mixture in a chamber, a field is rotated relative to a chamber to cause rotation of the chiral objects. The rotation of the objects caused them to move directionally based on their chirality.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: May 3, 2011
    Assignee: Dynamic Connections, LLC
    Inventors: Osman Kibar, Mirianas Chachisvilis, Eugene Tu, Thomas H. Marsilje
  • Publication number: 20110033840
    Abstract: A method of generating pathogen detecting liposomes includes a step of providing molecular beacons with fluorescing components. The molecular beacons include either strands of RNA or DNA and the fluorescing components include an emitter and a quencher. The method further uses nanodroplet technology to encapsulate the molecular beacons within a lipid membrane. Subsequently, receptors are assembled in association with the membrane.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: NANOTROPE INC.
    Inventors: Eugene Tu, Donald E. Ackley, Anita Forster, Michael Krihak
  • Publication number: 20100304429
    Abstract: Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on an optical switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 2, 2010
    Inventors: William Frank Butler, Mirianas Chachisvilis, Robert Dees, Norbert Hagen, Philippe Marchand, Daniel E. Raymond, Eugene Tu, Mark M. Wang, Joon Mo Yang, Rong Yang, Haichuan Zhang