Patents by Inventor Euljoon Park

Euljoon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190159837
    Abstract: Disclosed is a catheter comprising a first support member located near the distal end of the catheter and having a first hollow with both open ends; a second support member located near the proximal end of the catheter in comparison to the first support member and having a second hollow with both open ends; an operating tube configured to elongate in one direction; at least one connection member having one end connected to the first support member and the other end connected to the second support member; and a shaft body located near the proximal end of the catheter in comparison to the second support member to elongate in one direction, the shaft body having a fourth hollow with both open longitudinal ends so that the operating tube is inserted therein and movable in the longitudinal direction.
    Type: Application
    Filed: August 24, 2017
    Publication date: May 30, 2019
    Inventors: Euljoon PARK, Jungsoo OH, Jae Hyung PARK, Namha LEE, Hyunhwan JANG, Seungwoo SONG, In Hee BAE, Jiyong CHO
  • Patent number: 10065040
    Abstract: A method to provide electrical stimulation therapy to stabilize ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of stimulation pulses delivered to the AV node during the AV node refractory period following the sensing of an atrial event.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: September 4, 2018
    Assignee: PACESETTER, INC.
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Publication number: 20170303985
    Abstract: Disclosed is a catheter, especially a catheter for denervation, having an improved head structure and its manufacturing method, which may have a small design, allow convenient production and ensure excellent reproduction. The catheter includes a cylinder member having a hollow formed therein, at least one electrode mounted to the cylinder member to generate heat, and a power supply wire printed on the cylinder member and connected to the electrode to give a power supply path for the electrode.
    Type: Application
    Filed: September 22, 2015
    Publication date: October 26, 2017
    Applicant: HANDOK KALOS MEDICAL INC.
    Inventors: Euljoon PARK, Jungsoo OH, Jae Hyung PARK, Hyunhwan JANG, Seungwoo SONG, Jongsuk WON, Jiyong CHO
  • Publication number: 20170119453
    Abstract: A system and method for treating an arrhythmia in a heart are provided. The system includes an electronic control unit configured to monitor movement of one or more position sensor over a period of time. The position sensors may, for example, comprise electrodes or coils configured to generate induced voltages and currents in the presence of electromagnetic fields, The positions sensors are in contact with portions of heart tissue and changes in position are representative of motion of that tissue. The electronic control unit is further configured to generate an indicator, responsive to the movements of the sensors over the period of time, of a characteristic of the heart affected by delivery of ablation energy to heart tissue. In this manner, the effectiveness and safety of cardiac tissue ablation for treatment of the arrhythmia can be assessed and a post-ablation therapy regimen determined.
    Type: Application
    Filed: December 7, 2016
    Publication date: May 4, 2017
    Inventors: Kyungmoo Ryu, Thao T. Ngo, Euljoon Park, Stuart Rosenberg, Allen Keel, Wenbo Hou, Steve Koh, Kjell Noren, Michael Yang
  • Patent number: 9572620
    Abstract: A system and method for treating an arrhythmia in a heart are provided. The system includes an electronic control unit configured to monitor movement of one or more position sensor over a period of time. The position sensors may, for example, comprise electrodes or coils configured to generate induced voltages and currents in the presence of electromagnetic fields. The positions sensors are in contact with portions of heart tissue and changes in position are representative of motion of that tissue. The electronic control unit is further configured to generate an indicator, responsive to the movements of the sensors over the period of time, of a characteristic of the heart affected by delivery of ablation energy to heart tissue. In this manner, the effectiveness and safety of cardiac tissue ablation for treatment of the arrhythmia can be assessed and a post-ablation therapy regimen determined.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 21, 2017
    Inventors: Kyungmoo Ryu, Thao T. Ngo, Euljoon Park, Stuart Rosenberg, Allen Keel, Wenbo Hou, Steve Koh, Kjell Noren, Michael Yang
  • Patent number: 9282895
    Abstract: In an implantable medical device for monitoring glucose concentration in the blood, a blood-glucose concentration analysis is performed using correlations of blood-glucose concentration with measures of metabolic oxygen consumption including oxymetric, and/or temperature. Analysis of electrocardiographic data is used in a parallel method to detect and/or confirm the onset and/or existence and/or extent of hypoglycemia and/or hyperglycemia. Blood-glucose concentration calculation is enhanced by using the combination of the oxygen metabolism analysis and electrocardiographic analysis.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: March 15, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi, Euljoon Park, Eric Falkenberg, Michael E. Benser
  • Patent number: 9162067
    Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial electro-mechanical stability, and responding to the same. One or more signal indicative of electrical functioning of a patient's heart is obtained, as is one or more signal indicative of mechanical functioning of the patient's heart. The patient's myocardial electrical stability is monitored based on the one or more signal indicative of electrical functioning of the patient's heart, and the patient's myocardial mechanical stability is monitored based on the one or more signal indicative of mechanical functioning of the patient's heart. Based on both the myocardial electrical stability and myocardial mechanical stability, the patient's risk of an adverse cardiac event is monitored. Further, when the patient is at risk of an adverse cardiac event, a response is triggered that is specific to both the myocardial electrical stability and the myocardial mechanical stability.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 20, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Taraneh Ghaffari Farazi, Eric Falkenberg, Euljoon Park
  • Patent number: 9107585
    Abstract: An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 18, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Louis Wong, Cem Shaquer, Gene A. Bornzin, Euljoon Park, Andre Walker, Dorin Panescu
  • Patent number: 9078574
    Abstract: Techniques are provided for use by implantable medical devices such as pacemakers or by external systems in communication with such devices. An intracardiac electrogram (IEGM) is sensed within a patient in which the device is implanted using a cardiac signal sensing system. Cardiac events of interest such as arrhythmias, premature atrial contractions (PACs), premature ventricular contractions (PVCs) and pacemaker mediated tachycardias (PMTs) are detected within the patient using event detection systems and then portions of the IEGM representative of the events of interest are recorded in device memory. Subsequently, during an off-line or background analysis, the recorded IEGM data is retrieved and analyzed to identify false detections. In response to false detections, the cardiac signal sensing systems and/or the event detection systems of the implantable device are selectively adjusted or reprogrammed to reduce or eliminate any further false detections, including false-positives or false-negatives.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 14, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Jeffery D. Snell, Euljoon Park
  • Publication number: 20150088218
    Abstract: A method to provide electrical stimulation therapy to stabilize ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of stimulation pulses delivered to the AV node during the AV node refractory period following the sensing of an atrial event.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Publication number: 20150088217
    Abstract: An implantable cardiac stimulation device provides electrical stimulation therapy to stabilize the ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of sub-threshold stimulation pulses delivered to capture AV node vagal innervations following the detection of atrial fibrillation.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Patent number: 8989852
    Abstract: Techniques are provided for detecting and distinguishing stroke and cardiac ischemia based on electrocardiac signals. In one example, the device senses atrial and ventricular signals within the patient along a set of unipolar sensing vectors and identifies certain morphological features within the signals such as PR intervals, ST intervals, QT intervals, T-waves, etc. The device detects changes, if any, within the morphological features such as significant shifts in ST interval elevation or an inversion in T-wave shape, which are indicative of stroke or cardiac ischemia. By selectively comparing changes detected along different unipolar sensing vectors, the device distinguishes or discriminates stroke from cardiac ischemia within the patient. The discrimination may be corroborated using various physiological and hemodynamic parameters. In some examples, the device further identifies the location of the ischemia within the heart.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 24, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Rupinder Bharmi, Edward Karst, Ryan Rooke, Riddhi Shah, Fujian Qu, Gene A. Bornzin, Taraneh G. Farazi, Euljoon Park
  • Patent number: 8934971
    Abstract: An implantable cardiac stimulation device and method provide electrical stimulation therapy to stabilize the ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of stimulation pulses delivered to the AV node during the AV node refractory period following the sensing of an atrial event. Alternatively, the stimulation therapy may be a plurality of sub-threshold stimulation pulses delivered to capture AV node vagal innervations following the detection of atrial fibrillation.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: January 13, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Publication number: 20140221771
    Abstract: In an implantable medical device for monitoring glucose concentration in the blood, a blood-glucose concentration analysis is performed using correlations of blood-glucose concentration with measures of metabolic oxygen consumption including oxymetric, and/or temperature. Analysis of electrocardiographic data is used in a parallel method to detect and/or confirm the onset and/or existence and/or extent of hypoglycemia and/or hyperglycemia. Blood-glucose concentration calculation is enhanced by using the combination of the oxygen metabolism analysis and electrocardiographic analysis.
    Type: Application
    Filed: December 10, 2013
    Publication date: August 7, 2014
    Applicant: Pacesetter, Inc
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi, Euljoon Park, Eric Falkenberg, Michael E. Benser
  • Publication number: 20140214110
    Abstract: An implantable device monitors and treats heart failure, pulmonary edema, and hemodynamic conditions and in some cases applies therapy. In one implementation, the implantable device applies a high-frequency multi-phasic pulse waveform over multiple-vectors through tissue. The waveform has a duration less than the charging time constant of electrode-electrolyte interfaces in vivo to reduce intrusiveness while increasing sensitivity and specificity for trending parameters. The waveform can be multiplexed over multiple vectors and the results cross-correlated or subjected to probabilistic analysis or thresholding schemata to stage heart failure or pulmonary edema. In one implementation, a fractionation morphology of a sensed impedance waveform is used to trend intracardiac pressure to stage heart failure and to regulate cardiac resynchronization therapy. The waveform also provides unintrusive electrode integrity checks and 3-D impedancegrams.
    Type: Application
    Filed: November 1, 2013
    Publication date: July 31, 2014
    Applicant: Pacesetter, Inc.
    Inventors: Weiqun Yang, Malin Ohlander, Louis Wong, Nils Holmstrom, Cem Shaquer, Euljoon Park, Dorin Panescu, Shahrooz Shahparnia, Andre Walker, Ajit Pillai, Mihir Naware
  • Patent number: 8731665
    Abstract: Systems and methods are provided for detecting the orientation and/or movement of a patient having an implantable cardiac stimulation device and evaluating whether a change in the patient's cardiac activity can be at least in part due to a change in the patient's orientation. In one particular embodiment, signals from an orientation sensor and/or a pressure sensor are evaluated to determine static positional orientation of the patient and determine based on the static orientation whether the patient's cardiac activity is abnormal.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: May 20, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Laleh Jalali, Steve Koh, Gene A. Bornzin, Euljoon Park
  • Publication number: 20140114203
    Abstract: Techniques are provided for use by implantable medical devices such as pacemakers or by external systems in communication with such devices. An intracardiac electrogram (IEGM) is sensed within a patient in which the device is implanted using a cardiac signal sensing system. Cardiac events of interest such as arrhythmias, premature atrial contractions (PACs), premature ventricular contractions (PVCs) and pacemaker mediated tachycardias (PMTs) are detected within the patient using event detection systems and then portions of the IEGM representative of the events of interest are recorded in device memory. Subsequently, during an off-line or background analysis, the recorded IEGM data is retrieved and analyzed to identify false detections. In response to false detections, the cardiac signal sensing systems and/or the event detection systems of the implantable device are selectively adjusted or reprogrammed to reduce or eliminate any further false detections, including false-positives or false-negatives.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: PACESETTER, INC.
    Inventors: Jeffery D. Snell, Euljoon Park
  • Patent number: 8634902
    Abstract: A cardiac analysis system is provided that includes an implantable medical device (IMD), at least one sensor, and an external device. The IMD has electrodes positioned proximate to a heart that sense first cardiac signals of the heart and associated with a clinical ventricular tachycardia (VT) event and second cardiac signals associated with an induced VT event. The sensor measures first and second cardiac parameters of the heart associated with the clinical and induced VT events, respectively. The external device is configured to receive the first and second cardiac signals associated with the clinical and the induced VT events and the first and second cardiac parameters associated with the clinical and the induced VT events. The external device compares the first and second cardiac signals and compares the first and second cardiac parameters to determine if the clinical and induced VT events are a common type of VT event.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 21, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Michael E. Benser, Gene A. Bornzin, Euljoon Park, Kyungmoo Ryu, Michael Hardage
  • Patent number: 8630692
    Abstract: In an implantable medical device for monitoring glucose concentration in the blood, a blood-glucose concentration analysis is performed using correlations of blood-glucose concentration with measures of metabolic oxygen consumption including oxymetric, and/or temperature. Analysis of electrocardiographic data is used in a parallel method to detect and/or confirm the onset and/or existence and/or extent of hypoglycemia and/or hyperglycemia. Blood-glucose concentration calculation is enhanced by using the combination of the oxygen metabolism analysis and electrocardiographic analysis.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: January 14, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi, Euljoon Park, Eric Falkenberg, Michael E. Benser
  • Patent number: 8626278
    Abstract: A medical device is provided that comprises a lead assembly. The lead assembly includes at least one intra-cardiac (IC) electrode, an extra-cardiac (EC) electrode and a subcutaneous remote-cardiac (RC) electrode. The IC electrode is configured to be located within the heart. The EC electrode is configured to be positioned proximate to at least one of a superior vena cava (SVC) and a left ventricle (LV) of a heart. The RC electrode is configured to be located remote from the heart. An extra-cardiac impedance (ECI) module is configured to measure extra-cardiac impedance along an ECI vector between the EC and RC electrodes to obtain ECI measurements. An arrhythmia monitoring module is configured to declare a potential atrial arrhythmia to be an atrial arrhythmia based on the hemodynamic performance determined from the ECI measurements. The hemodynamic performance assessment module is further enabled to compare a current ECI pattern with a prior baseline ECI waveform.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 7, 2014
    Inventors: Euljoon Park, Steve Koh, Gene A. Bornzin