Patents by Inventor Eun Gyong PARK

Eun Gyong PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139718
    Abstract: The present invention is a perovskite metal oxide catalyst substituted with metal ions for reducing carbon deposition, a method for producing the same, and a process for performing a methane reforming reaction using this catalyst. The catalyst is produced in which Ni in ionic form is substituted at a portion of the Ti site of SrTiO3, MgTiO3, CaTiO3, or BaTiO3, which is a multi-component metal oxide having a perovskite structure. Then, various methane reforming reactions (steam-methane reforming, dry reforming of methane, catalytic partial oxidation of methane) may be efficiently and economically performed using this catalyst. The nickel-substituted perovskite metal oxide catalyst has a structure in which Ni2+ is substituted in the perovskite lattice structure. Thus, the metal oxide catalyst has advantages in that carbon deposition thereon does not occur, and thus, the catalyst has a high catalytic stability and may be used for a long time.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Inventors: Chang Hyun KO, Ji Yoon Jeon, Jeong Woo Yun, Eun Gyong Park
  • Patent number: 11918981
    Abstract: The present invention relates to a perovskite metal oxide catalyst substituted with metal ions for reducing carbon deposition, a method for producing the same, and a process for performing a methane reforming reaction using this catalyst. According to the present invention, a novel type of catalyst is produced in which Ni, iron or cobalt in ionic form is substituted at a portion of the Ti site (B-site) of SrTiO3, MgTiO3, CaTiO3 or BaTiO3, which is a multicomponent metal oxide having a perovskite (ABO3) structure. Then, various methane reforming reactions (e.g., steam-methane reforming (SMR), dry reforming of methane (DRM), catalytic partial oxidation of methane (CPOM), etc.) may be efficiently and economically performed using this catalyst. The nickel-substituted perovskite metal oxide catalyst according to the present invention has a structure in which Ni2+, Co2+, Fe2+, Co3+ or Fe3+ is substituted in the perovskite lattice structure.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 5, 2024
    Assignee: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Chang Hyun Ko, Ji Yoon Jeon, Jeong Woo Yun, Eun Gyong Park
  • Publication number: 20200269217
    Abstract: The present invention relates to a perovskite metal oxide catalyst substituted with metal ions for reducing carbon deposition, a method for producing the same, and a process for performing a methane reforming reaction using this catalyst. According to the present invention, a novel type of catalyst is produced in which Ni, iron or cobalt in ionic form is substituted at a portion of the Ti site (B-site) of SrTiO3, MgTiO3, CaTiO3 or BaTiO3, which is a multicomponent metal oxide having a perovskite (ABO3) structure. Then, various methane reforming reactions (e.g., steam-methane reforming (SMR), dry reforming of methane (DRM), catalytic partial oxidation of methane (CPOM), etc.) may be efficiently and economically performed using this catalyst. The nickel-substituted perovskite metal oxide catalyst according to the present invention has a structure in which Ni2+, Co2+, Fe2+, Co3+ or Fe3+ is substituted in the perovskite lattice structure.
    Type: Application
    Filed: November 6, 2017
    Publication date: August 27, 2020
    Inventors: Chang Hyun KO, Ji Yoon JEON, Jeong Woo YUN, Eun Gyong PARK