Patents by Inventor Eun-Kuk Chung

Eun-Kuk Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8419853
    Abstract: A stacked semiconductor device and a method for fabricating the stacked semiconductor device are disclosed. The stacked semiconductor device includes a first insulating interlayer having an opening that partially exposes a substrate, wherein the substrate includes single crystalline silicon, and a first seed pattern that fills the opening, wherein the first seed pattern has an upper portion disposed over the opening, and the upper portion is tapered away from the substrate. The stacked semiconductor device further includes a second insulating interlayer formed on the first insulating interlayer, wherein a trench that exposes the upper portion of the first seed pattern penetrates the second insulating interlayer, and a first single crystalline silicon structure that fills the trench.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Seung Kang, Eun-Kuk Chung, Joon Kim, Jin-Hong Kim, Suk-Chul Bang
  • Patent number: 7682450
    Abstract: A stacked semiconductor device and a method for fabricating the stacked semiconductor device are disclosed. The stacked semiconductor device includes a first insulating interlayer having an opening that partially exposes a substrate, wherein the substrate includes single crystalline silicon, and a first seed pattern that fills the opening, wherein the first seed pattern has an upper portion disposed over the opening, and the upper portion is tapered away from the substrate. The stacked semiconductor device further includes a second insulating interlayer formed on the first insulating interlayer, wherein a trench that exposes the upper portion of the first seed pattern penetrates the second insulating interlayer, and a first single crystalline silicon structure that fills the trench.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Seung Kang, Eun-Kuk Chung, Joon Kim, Jin-Hong Kim, Suk-Chul Bang
  • Publication number: 20100065912
    Abstract: A stacked semiconductor device and a method for fabricating the stacked semiconductor device are disclosed. The stacked semiconductor device includes a first insulating interlayer having an opening that partially exposes a substrate, wherein the substrate includes single crystalline silicon, and a first seed pattern that fills the opening, wherein the first seed pattern has an upper portion disposed over the opening, and the upper portion is tapered away from the substrate. The stacked semiconductor device further includes a second insulating interlayer formed on the first insulating interlayer, wherein a trench that exposes the upper portion of the first seed pattern penetrates the second insulating interlayer, and a first single crystalline silicon structure that fills the trench.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yun-Seung KANG, Eun-Kuk CHUNG, Joon KIM, Jin-Hong KIM, Suk-Chul BANG
  • Patent number: 7585757
    Abstract: In a semiconductor device and method of manufacturing the semiconductor device, a punch-through prevention film pattern and a channel film pattern are formed on an insulation layer. The punch-through prevention pattern and the insulation layer may include nitride and oxide, respectively. The punch-through prevention pattern is located under the channel pattern.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Seon Ahn, Joon Kim, Jin-Hong Kim, Suk-Chul Bang, Eun-Kuk Chung, Hyung-Mo Yang, Chang-Yeon Yoo, Yun-Seung Kang, Kyung-Tae Jang
  • Publication number: 20080176374
    Abstract: A method of fabricating a semiconductor device using a self-aligned metal shunt process is disclosed. The method can include sequentially forming a lower conductive pattern and a sacrificial pattern on a semiconductor substrate. An interlayer dielectric layer is formed to cover the sacrificial pattern. The interlayer dielectric layer is patterned to form a preliminary trench that exposes the top surface of the sacrificial pattern. The exposed sacrificial pattern is removed to form a trench that expose the top surface of the lower conductive pattern. An upper conductive pattern is formed to fill the trench.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 24, 2008
    Inventors: Yeol Jon, Eun-Kuk Chung, Joon Kim, Jin-Hong Kim
  • Publication number: 20080087933
    Abstract: Example embodiments relate to a semiconductor memory device including a channel layer pattern on a substrate, the channel layer pattern having a sidewall and an upper face, a spacer on the sidewall of the channel layer pattern, and a gate electrode covering the sidewall of the channel layer pattern, the spacer and the upper face of the channel layer pattern.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 17, 2008
    Inventors: Eun-Kuk Chung, Joon Kim, Jin-Hong Kim, Suk-Chul Bang, Jong-Seon Ahn
  • Publication number: 20070281434
    Abstract: According to embodiments of the invention, a height of a capacitor lower electrode is increased. Portions of the lower electrode and an interlayer insulating layer are etched within the interlayer insulating layer that is formed with the lower electrode thereon, so that a trench having a double damascene structure is formed. A dielectric layer and an upper electrode are formed within the trench. Therefore, shorts between metal interconnects caused by misalignments during formation of the upper electrode are prevented and consistent capacitance values may be secured.
    Type: Application
    Filed: August 20, 2007
    Publication date: December 6, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-Seon AHN, Joon KIM, Suk-Chul BANG, Sang-Hoon LEE, Yung-Jun KIM, Woo-Soon JANG, Eun-Kuk CHUNG
  • Patent number: 7268029
    Abstract: Provided is a method of fabricating a CMOS transistor in which, after a polysilicon layer used as a gate is formed on a semiconductor substrate, a photoresist pattern that exposes an n-MOS transistor region is formed on the polysilicon layer. An impurity is implanted in the polysilicon layer of the n-MOS transistor region using the photoresist pattern as a mask, and the photoresist pattern is removed. If the polysilicon layer of the n-MOS transistor region is damaged by the implanting of the impurity, the polysilicon layer of the n-MOS transistor region is annealed, and a p-MOS transistor gate and an n-MOS transistor gate are formed by patterning the polysilicon layer. The semiconductor substrate, the p-MOS transistor gate and the n-MOS transistor gate is cleaned with a hydrofluoric acid (HF) solution, without causing a decrease in height of the n-MOS transistor gate.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: September 11, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-kuk Chung, Joon Kim, Suk-Chul Bang, Jong-Sun Ahn, Sang-hoon Lee, Woo-soon Jang, Yung-jun Kim
  • Publication number: 20070023794
    Abstract: A stacked semiconductor device and a method for fabricating the stacked semiconductor device are disclosed. The stacked semiconductor device includes a first insulating interlayer having an opening that partially exposes a substrate, wherein the substrate includes single crystalline silicon, and a first seed pattern that fills the opening, wherein the first seed pattern has an upper portion disposed over the opening, and the upper portion is tapered away from the substrate. The stacked semiconductor device further includes a second insulating interlayer formed on the first insulating interlayer, wherein a trench that exposes the upper portion of the first seed pattern penetrates the second insulating interlayer, and a first single crystalline silicon structure that fills the trench.
    Type: Application
    Filed: July 13, 2006
    Publication date: February 1, 2007
    Inventors: Yun-Seung Kang, Eun-Kuk Chung, Joon Kim, Jin-Hong Kim, Suk-Chul Bang
  • Publication number: 20060281290
    Abstract: In a semiconductor device and method of manufacturing the semiconductor device, a punch-through prevention film pattern and a channel film pattern are formed on an insulation layer. The punch-through prevention pattern and the insulation layer may include nitride and oxide, respectively. The punch-through prevention pattern is located under the channel pattern.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 14, 2006
    Inventors: Jong-Seon Ahn, Joon Kim, Jin-Hong Kim, Suk-Chul Bang, Eun-Kuk Chung, Hyung-Mo Yang, Chang-Yeon Yoo, Yun-Seung Kang, Kyung-Tae Jang
  • Patent number: 7049197
    Abstract: In a method of manufacturing a semiconductor device including independent gate patterns separated from each other, an active region is defined by forming a field region on a substrate. A gate oxide layer and a polysilicon layer are formed on the substrate. A preliminary gate pattern is formed by partially removing the polysilicon layer along a first direction by a first etching process. A spacer is formed along a side surface of the preliminary gate pattern. A number of separated gate patterns is formed by partially removing the preliminary gate pattern along a second direction crossing the first direction by a second etching process. The gate patterns overlap with the active regions and are separated from each other. Therefore, the overlap margin is increased, and the polysilicon layer is prevented from being over-etched when it is patterned to form the gate pattern.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 23, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Soon Jang, Joon Kim, Eun-Kuk Chung
  • Patent number: 7008876
    Abstract: A method of forming a gate structure of a semiconductor device includes forming a gate insulation film and a polysilicon film on a semiconductor substrate where an active region and a field region are defined, followed by forming a buffer layer on the polysilicon film to minimize damage to the polysilicon film during a subsequent ion implantation process. The polysilicon film is made electrically conductive by the implanting of impurities into the polysilicon film. Gate patterns are then formed by etching the conductive polysilicon film and the gate insulation film. Defects, such as active pitting, associated with dual electrodes are effectively prevented because the polysilicon film is protected during the ion implanting process.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: March 7, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Sung Lee, Bong-Hyun Kim, Myang-Sik Han, Eun-Kuk Chung
  • Publication number: 20050164455
    Abstract: In a method of manufacturing a semiconductor device including independent gate patterns separated from each other, an active region is defined by forming a field region on a substrate. A gate oxide layer and a polysilicon layer are formed on the substrate. A preliminary gate pattern is formed by partially removing the polysilicon layer along a first direction by a first etching process. A spacer is formed along a side surface of the preliminary gate pattern. A number of separated gate patterns is formed by partially removing the preliminary gate pattern along a second direction crossing the first direction by a second etching process. The gate patterns overlap with the active regions and are separated from each other. Therefore, the overlap margin is increased, and the polysilicon layer is prevented from being over-etched when it is patterned to form the gate pattern.
    Type: Application
    Filed: October 28, 2004
    Publication date: July 28, 2005
    Inventors: Woo-Soon Jang, Joon Kim, Eun-Kuk Chung
  • Publication number: 20050112814
    Abstract: Provided is a method of fabricating a CMOS transistor in which, after a polysilicon layer used as a gate is formed on a semiconductor substrate, a photoresist pattern that exposes an n-MOS transistor region is formed on the polysilicon layer. An impurity is implanted in the polysilicon layer of the n-MOS transistor region using the photoresist pattern as a mask, and the photoresist pattern is removed. If the polysilicon layer of the n-MOS transistor region is damaged by the implanting of the impurity, the polysilicon layer of the n-MOS transistor region is annealed, and a p-MOS transistor gate and an n-MOS transistor gate are formed by patterning the polysilicon layer. The semiconductor substrate, the p-MOS transistor gate and the n-MOS transistor gate is cleaned with a hydrofluoric acid (HF) solution, without causing a decrease in height of the n-MOS transistor gate.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 26, 2005
    Inventors: Eun-kuk Chung, Joon Kim, Suk-Chul Bang, Jong-Sun Ahn, Sang-hoon Lee, Woo-soon Jang, Yung-jun Kim
  • Publication number: 20050110143
    Abstract: According to embodiments of the invention, a height of a capacitor lower electrode is increased. Portions of the lower electrode and an interlayer insulating layer are etched within the interlayer insulating layer that is formed with the lower electrode thereon, so that a trench having a double damascene structure is formed. A dielectric layer and an upper electrode are formed within the trench. Therefore, shorts between metal interconnects caused by misalignments during formation of the upper electrode are prevented and consistent capacitance values may be secured.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 26, 2005
    Inventors: Jong-Seon Ahn, Joon Kim, Suk Bang, Sang-Hoon Lee, Yung-Jun Kim, Woo-Soon Jang, Eun-Kuk Chung
  • Publication number: 20040166616
    Abstract: A method of forming a gate structure of a semiconductor device includes forming a gate insulation film and a polysilicon film on a semiconductor substrate where an active region and a field region are defined, followed by forming a buffer layer on the polysilicon film to minimize damage to the polysilicon film during a subsequent ion implantation process. The polysilicon film is made electrically conductive by the implanting of impurities into the polysilicon film. Gate patterns are then formed by etching the conductive polysilicon film and the gate insulation film. Defects, such as active pitting, associated with dual electrodes are effectively prevented because the polysilicon film is protected during the ion implanting process.
    Type: Application
    Filed: December 30, 2003
    Publication date: August 26, 2004
    Inventors: Woo-Sung Lee, Bong-Hyun Kim, Myang-Sik Han, Eun-Kuk Chung