Patents by Inventor Eun Kyu Kang

Eun Kyu Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240119851
    Abstract: The present invention relates to a method and system for providing language learning services. The method of providing language learning services, according to the present invention, the method may include: activating, in response to receiving an input for acquiring a learning target image through a user terminal, a camera of the user terminal; specifying at least a portion of an image taken by the camera as the learning target image; receiving language learning information for the learning target image from a server; providing the language learning information to the user terminal; and storing, based on a request for storing of the language learning information, the language learning information in association with the learning target image, such that the learning target image is used in conjunction with learning of the language learning information.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 11, 2024
    Inventors: Eun Young LEE, Min Jung KIM, Yeun Hee KANG, Bong Hyun CHOI, Tae Un KIM, Soo Hyun LEE, Young Ho KIM, Chan Kyu CHOI, Jin Mo KU, Jong Won KIM
  • Publication number: 20240106540
    Abstract: An optical transceiver is provided. A transceiver optical sub-assembly included in the optical transceiver includes a package body, accommodating optical devices and including a front surface coupled to an optical signal terminal, and a feed-through structure closing a rear surface of the package body and an open portion provided at both side surfaces adjacent to the rear surface. A disposition portion where one end of a flexible printed circuit board (FPCB) is disposed is provided at a front surface of the feed-through structure. Feed-through electrodes bonded to FPCB electrodes provided at the one end of the FPCB are provided on a surface of the disposition portion. For precise alignment of the FPCB electrodes and the feed-through electrodes, a protrusion portion is provided at the one end of the FPCB, and an insertion groove into which the protrusion portion is inserted is formed in a front surface of the feed-through structure.
    Type: Application
    Filed: June 5, 2023
    Publication date: March 28, 2024
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Eun Kyu KANG, Jong Jin LEE
  • Publication number: 20230069724
    Abstract: An optical receiver sub-assembly is provided, which includes a substrate, an optical waveguide device mounted on the substrate to transfer ray incident from a ray source, and a photodetector mounted on the substrate and disposed under a vertical cross-sectional surface of the optical waveguide device, wherein the ray is sequentially reflected and refracted by an upper slope surface and a lower slope surface provided in the vertical cross-sectional surface and is vertically incident on an active area of the photodetector.
    Type: Application
    Filed: July 12, 2022
    Publication date: March 2, 2023
    Inventors: Won Bae KWON, Jong Jin LEE, Eun Kyu KANG, Soo Yong JUNG, Hae Chung KANG, Sang Jin KWON, Dae Seon KIM
  • Publication number: 20230067645
    Abstract: A highly integrated multi-channel optical module is provided. The optical module includes an optical source device mounted on a substrate by an optical source mount unit, a waveguide mounted on the substrate by a waveguide mount unit, a lens mount unit disposed between the optical source device and the waveguide and mounted on the substrate, and a lens unit fixed to the lens mount unit by an adhesive cured by ultraviolet (UV) parallel light, wherein a light path of the UV parallel light is formed in the lens mount unit by a reflector attached on a side surface of the lens mount unit, and the UV parallel light moves along the light path and cures the adhesive coated on an upper portion of the lens mount unit facing a lower end portion of the lens unit.
    Type: Application
    Filed: June 28, 2022
    Publication date: March 2, 2023
    Inventors: Hae Chung KANG, Eun Kyu KANG, Jong Jin LEE, Sang Jin KWON, Won Bae KWON, Dae Seon KIM, Dae Woong MOON, Soo Yong JUNG, Gye Sul CHO
  • Publication number: 20230061382
    Abstract: A multi-channel optical sub-assembly includes a printed circuit board with a signal processor mounted thereon, a package window mounted on the printed circuit board, the package window including a transparent material, a package mounted on the package window, and an optical device accommodated into an inner space of the package and configured to convert an electrical signal, input from the signal processor, into an optical signal, wherein the electrical signal sequentially passes through a window through electrode buried in the package window and a package through electrode buried in the package and is input to the optical device.
    Type: Application
    Filed: August 2, 2022
    Publication date: March 2, 2023
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Eun Kyu KANG, Jong Jin LEE, Dae Seon KIM, Sang Jin KWON, Won Bae KWON, Soo Yong JUNG, Hae Chung KANG, Dae Woong MOON, Gye Sul CHO
  • Publication number: 20220094138
    Abstract: A structure and a manufacturing method of an optical transmission module, in which output light of each of a first optical transmission unit and a second optical transmission unit is combined into one and transmitted through an optical fiber. In order to manufacture the optical transmission module, the first optical transmission unit and the second optical transmission unit are separately manufactured using a wafer-level packaging process and then are stacked. As a result, emission of generated heat is divided into a first heat sink installed in the first optical transmission unit and a second heat sink installed in the second optical transmission unit so that better heat dissipation efficiency is achieved than a conventional optical transmission module. In addition, a mounting area may also be reduced to ½ of the conventional module.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 24, 2022
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Eun Kyu KANG, Jong Jin LEE, Dae Seon KIM, Eun Kyoung JEON, Sang Jin KWON, Won Bae KWON, Kwon Seob LIM, Soo Yong JUNG
  • Patent number: 11239222
    Abstract: Provided is a cooled optical transmission module device including a silicon wafer having a plurality of platform mounting grooves, each of which serves as a space for mounting in which an optical transmission platform therein, a thermoelectric cooler bonded to the platform mounting groove to transfer heat to outside, the optical transmission platform provided on the thermoelectric cooler and configured to output an optical signal by generating and reflecting the optical signal, a dielectric sub-mount bonded to the platform mounting groove of the silicon wafer and electrically connected to the mounted optical transmission platform, and a cover configured to cover the platform mounting groove of the silicon wafer and seal the platform mounting groove while providing an electric path.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: February 1, 2022
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Eun Kyu Kang, Jong Jin Lee, Sang Jin Kwon, Won Bae Kwon, Dae Seon Kim, Soo Yong Jung
  • Publication number: 20210125975
    Abstract: Provided is a cooled optical transmission module device including a silicon wafer having a plurality of platform mounting grooves, each of which serves as a space for mounting in which an optical transmission platform therein, a thermoelectric cooler bonded to the platform mounting groove to transfer heat to outside, the optical transmission platform provided on the thermoelectric cooler and configured to output an optical signal by generating and reflecting the optical signal, a dielectric sub-mount bonded to the platform mounting groove of the silicon wafer and electrically connected to the mounted optical transmission platform, and a cover configured to cover the platform mounting groove of the silicon wafer and seal the platform mounting groove while providing an electric path.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 29, 2021
    Inventors: Eun Kyu KANG, Jong Jin LEE, Sang Jin KWON, Won Bae KWON, Dae Seon KIM, Soo Yong JUNG
  • Patent number: 10795087
    Abstract: An ultra-small multi-channel optical module according to one embodiment of the present invention includes a base board, a glass substrate, a heat sink, optical elements, parallel light lenses, a first rectangular reflector, a glass cover, a second rectangular reflector, horizontal reflectors, and a light collecting lens.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 6, 2020
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dae Seon Kim, Jong Jin Lee, Eun Kyu Kang, Sang Jin Kwon, Jeong Eun Kim, Kwon Seob Lim, Eun Kyoung Jeon, Soo Yong Jung
  • Publication number: 20200158958
    Abstract: An ultra-small multi-channel optical module according to one embodiment of the present invention includes a base board, a glass substrate, a heat sink, optical elements, parallel light lenses, a first rectangular reflector, a glass cover, a second rectangular reflector, horizontal reflectors, and a light collecting lens.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 21, 2020
    Inventors: Dae Seon KIM, Jong Jin LEE, Eun Kyu KANG, Sang Jin KWON, Jeong Eun KIM, Kwon Seob LIM, Eun Kyoung JEON, Soo Yong JUNG
  • Patent number: 10459177
    Abstract: Provided are an optical alignment device applied to an assembly process of an optical transmitter and an optical receiver that include multi-channel optical elements and optical waveguide elements for optical communication, and an optical alignment method thereof. The optical alignment device includes an element fixing case with a mounting space formed thereinside and an element insertion hole communicating with the mounting space formed at an upper side thereof, and a light source mounted in the mounting space of the element fixing case and configured to emit light toward a lower side of an optical element or an optical waveguide element which is inserted into the element insertion hole to check a position of a core.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 29, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS REASEARCH INSTITUTE
    Inventors: Jeong Eun Kim, Jong Jin Lee, Eun Kyu Kang, Won Bae Kwon, Soo Yong Jung
  • Patent number: 10459165
    Abstract: The present invention relates to an optical module, and more specifically, to an optical module which allows an optical coupling loss of an optical signal to be minimized and a frequency bandwidth thereof to be maximized. The optical module according to an embodiment of the present invention includes: a circuit substrate; an electronic element mounted on one surface of the circuit substrate; an optical element mounted on another surface perpendicular to the one surface of the circuit substrate; a capacitor mounted between the electronic element and the optical element; and an optical waveguide array on which an optical waveguide is disposed.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 29, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Won Bae Kwon, Jong Jin Lee, Eun Kyu Kang, Jeong Eun Kim, Soo Yong Jung
  • Patent number: 10444448
    Abstract: Provided are an optical module platform structure and a method of manufacturing the same. The optical module platform structure includes an optical module platform substrate, a light source device mounted on a light source mount attached on one upper side of the optical module platform substrate, a waveguide spaced apart from the light source device by a certain interval and mounted on a waveguide mount attached on the optical module platform substrate, a lens mount fixed between the light source mount and the waveguide mount, and a lens fixed to a top of the lens mount. Therefore, optical coupling efficiency between a light source and a waveguide is maximized by applying a lens mount, and an optical alignment error is minimized.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: October 15, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Soo Yong Jung, Jong Jin Lee, Eun Kyu Kang, Won Bae Kwon, Jeong Eun Kim
  • Publication number: 20190041590
    Abstract: Provided are an optical module platform structure and a method of manufacturing the same. The optical module platform structure includes an optical module platform substrate, a light source device mounted on a light source mount attached on one upper side of the optical module platform substrate, a waveguide spaced apart from the light source device by a certain interval and mounted on a waveguide mount attached on the optical module platform substrate, a lens mount fixed between the light source mount and the waveguide mount, and a lens fixed to a top of the lens mount. Therefore, optical coupling efficiency between a light source and a waveguide is maximized by applying a lens mount, and an optical alignment error is minimized.
    Type: Application
    Filed: July 23, 2018
    Publication date: February 7, 2019
    Inventors: Soo Yong JUNG, Jong Jin LEE, Eun Kyu KANG, Won Bae KWON, Jeong Eun KIM
  • Publication number: 20190033540
    Abstract: Provided are an optical alignment device applied to an assembly process of an optical transmitter and an optical receiver that include multi-channel optical elements and optical waveguide elements for optical communication, and an optical alignment method thereof. The optical alignment device includes an element fixing case with a mounting space formed thereinside and an element insertion hole communicating with the mounting space formed at an upper side thereof, and a light source mounted in the mounting space of the element fixing case and configured to emit light toward a lower side of an optical element or an optical waveguide element which is inserted into the element insertion hole to check a position of a core.
    Type: Application
    Filed: November 9, 2017
    Publication date: January 31, 2019
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jeong Eun Kim, Jong Jin Lee, Eun Kyu Kang, Won Bae Kwon, Soo Yong Jung
  • Publication number: 20190025517
    Abstract: The present invention relates to an optical module, and more specifically, to an optical module which allows an optical coupling loss of an optical signal to be minimized and a frequency bandwidth thereof to be maximized. The optical module according to an embodiment of the present invention includes: a circuit substrate; an electronic element mounted on one surface of the circuit substrate; an optical element mounted on another surface perpendicular to the one surface of the circuit substrate; a capacitor mounted between the electronic element and the optical element; and an optical waveguide array on which an optical waveguide is disposed.
    Type: Application
    Filed: January 10, 2018
    Publication date: January 24, 2019
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Won Bae KWON, Jong Jin Lee, Eun Kyu Kang, Jeong Eun Kim, Soo Yong Jung