Patents by Inventor Eun Su YANG

Eun Su YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973209
    Abstract: A positive electrode active material for a secondary battery includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), wherein the lithium composite transition metal oxide has a layered crystal structure of space group R3m, includes the nickel (Ni) in an amount of 60 mol % or less based on a total amount of transition metals, includes the cobalt (Co) in an amount greater than an amount of the manganese (Mn), and is composed of single particles.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: April 30, 2024
    Assignee: LG Chem, Ltd.
    Inventors: Eun Hee Lee, Seong Bae Kim, Young Su Park, Yi Rang Lim, Hong Kyu Park, Song Yi Yang, Byung Hyun Hwang, Woo Hyun Kim
  • Patent number: 11939698
    Abstract: A wafer manufacturing method, an epitaxial wafer manufacturing method, and a wafer and epitaxial wafer manufactured thereby, are provided. The wafer manufacturing method enables the manufacture of a wafer with a low density of micropipe defects and minimum numbers of particles and scratches. The epitaxial wafer manufacturing method enables the manufacture of an epitaxial wafer that has low densities of defects such as downfall, triangular, and carrot defects, exhibits excellent device characteristics, and improves the yield of devices.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: March 26, 2024
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Jung-Gyu Kim, Eun Su Yang, Byung Kyu Jang, Jung Woo Choi, Yeon Sik Lee, Sang Ki Ko, Kap-Ryeol Ku
  • Publication number: 20240076799
    Abstract: A wafer manufacturing method, an epitaxial wafer manufacturing method, and a wafer and epitaxial wafer manufactured thereby, are provided. The wafer manufacturing method enables the manufacture of a wafer with a low density of micropipe defects and minimum numbers of particles and scratches. The epitaxial wafer manufacturing method enables the manufacture of an epitaxial wafer that has low densities of defects such as downfall, triangular, and carrot defects, exhibits excellent device characteristics, and improves the yield of devices.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 7, 2024
    Applicant: SENIC INC.
    Inventors: Jong Hwi PARK, Jung-Gyu KIM, Eun Su YANG, Byung Kyu JANG, Jung Woo CHOI, Yeon Sik LEE, Sang Ki KO, Kap-Ryeol KU
  • Patent number: 11856678
    Abstract: Example embodiments relate to a method of measurement, an apparatus for measurement, and an ingot growing system that measure properties relating an induction heating characteristic of a graphite article. The method of measurement comprises an arranging step of arranging a graphite article to the coil comprising a winded conducting wire; and a measuring step of applying power for measurement to the coil through means of measurement connected electronically to the coil, and measuring electromagnetic properties induced in the coil. The method of measurement and the like measure electromagnetic properties of graphite articles like an ingot growing container, and an insulating material, and provide data required for selecting so that further enhanced reproducibility for growth of an ingot can be secured.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 26, 2023
    Assignee: SENIC INC.
    Inventors: Eun Su Yang, Jong Hwi Park, Jung Woo Choi, Byung Kyu Jang, Sang Ki Ko, Jongmin Shim, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11795572
    Abstract: A method of manufacturing a silicon carbide ingot, includes a preparing operation of adjusting internal space of a reactor in which silicon carbide raw materials and a seed crystal are disposed to have a high vacuum atmosphere, a proceeding operation of injecting an inert gas into the internal space, heating the internal space by moving a heater surrounding the reactor to induce the silicon carbide raw materials to sublimate, and growing the silicon carbide ingot on the seed crystal, and a cooling operation of cooling the temperature of the internal space to room temperature. The moving of the heater has a relative position which becomes more distant at a rate of 0.1 mm/hr to 0.48 mm/hr based on the seed crystal.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: October 24, 2023
    Assignee: SENIC INC.
    Inventors: Byung Kyu Jang, Jong Hwi Park, Eun Su Yang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11646209
    Abstract: A method of cleaning a wafer comprises: a scrubbing operation comprising treating a target wafer to be cleaned with a brush at a rotation rate of 200 rpm or less to prepare a brush cleaned wafer; and a cleaning operation comprising cleaning the brush cleaned wafer with a cleaning solution to prepare a cleaned bare wafer, wherein the cleaning operation comprises a first cleaning operation and a second cleaning operation sequentially.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: May 9, 2023
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Il Hwan Yoo, Kap-Ryeol Ku, Jung-Gyu Kim, Jung Woo Choi, Eun Su Yang, Byung Kyu Jang, Sang Ki Ko
  • Patent number: 11591711
    Abstract: A silicon carbide ingot producing method is provided. The method produces a silicon carbide ingot in which an internal space of a reactor is depressurized and heated to create a predetermined difference in temperature between upper and lower portions of the internal space. The method produces a silicon carbide ingot in which a plane of a seed crystal corresponding to the rear surface of the silicon carbide ingot is lost minimally. Additionally, the method produces a silicon carbide ingot with few defects and good crystal quality.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 28, 2023
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Eun Su Yang, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11566344
    Abstract: A wafer having relaxation moduli different by 450 GPa or less, as determined by dynamic mechanical analysis, when loaded to 1 N and 18 N with a loading rate of 0.1 N/min at a temperature of 25° C.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: January 31, 2023
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Jongmin Shim, Eun Su Yang, Yeon Sik Lee, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11474012
    Abstract: A method for preparing a SiC ingot includes: disposing a raw material and a SiC seed crystal facing each other in a reactor having an internal space; subliming the raw material by controlling a temperature, a pressure, and an atmosphere of the internal space; growing the SiC ingot on the seed crystal; and collecting the SiC ingot after cooling the reactor. The wafer prepared from the ingot, which is prepared from the method, generates cracks when an impact is applied to a surface of the wafer, the impact is applied by an external impact source having mechanical energy, and a minimum value of the mechanical energy is 0.194 J to 0.475 J per unit area (cm2).
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 18, 2022
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Jongmin Shim, Eun Su Yang, Yeon Sik Lee, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11447889
    Abstract: An adhesive layer of seed crystal includes a graphitized adhesive layer, wherein the graphitized adhesive layer is prepared by heat-treating a pre-carbonized adhesive layer, and wherein the adhesive layer has Vr value of 28%/mm3 or more, and the Vr value is represented by Equation 1 below: Vr ? = { Sq ( V ? 1 - V ? 2 ) } × 1 ? 0 3 [ Equation ? ? 1 ] where Sg (%) is represented by Equation 2 below, V1 is a volume (mm3) of the pre-carbonized adhesive layer, and V2 is a volume (mm3) of the graphitized adhesive layer, Sg ? = { 1 - ( A ? 2 A ? 1 ) } × 1 ? 0 ? 0 ? % [ Equation ? ? 2 ] where A1 is an area (mm2) of the pre-carbonized adhesive layer, and A2 is an area (mm2) of the graphitized adhesive layer.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: September 20, 2022
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Jongmin Shim, Eun Su Yang, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11359306
    Abstract: A method for preparing a SiC ingot includes preparing a crucible assembly comprising a crucible body having an internal space, loading a raw material into the internal space of the crucible body and placing a plurality of SiC seed in the internal space of the crucible body at regular intervals spaced apart from the raw material, and growing the SiC ingot from the plurality of SiC seed by adjusting the internal space of the crucible body to a crystal growth atmosphere such that the raw material is vapor-transported and deposited to the plurality of SiC seed. A density of the crucible body may be 1.70 to 1.92 g/cm3.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 14, 2022
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Myung-Ok Kyun, Jongmin Shim, Eun Su Yang, Byung Kyu Jang, Jung Woo Choi, Sang Ki Ko, Kap-Ryeol Ku, Jung-Gyu Kim
  • Patent number: 11339497
    Abstract: A silicon carbide ingot manufacturing method and a silicon carbide ingot manufacturing system are provided. The silicon carbide ingot manufacturing method and the silicon carbide ingot manufacturing system may change a temperature gradient depending on the growth of an ingot by implementing a guide which has a tilted angle to an external direction from the interior of a reactor, in an operation to grow an ingot during a silicon carbide ingot manufacturing process.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: May 24, 2022
    Assignee: SENIC INC.
    Inventors: Jong Hwi Park, Kap-Ryeol Ku, Jung-Gyu Kim, Jung Woo Choi, Sang Ki Ko, Byung Kyu Jang, Eun Su Yang, Jung Doo Seo
  • Publication number: 20220093419
    Abstract: A method of cleaning a wafer comprises: a scrubbing operation comprising treating a target wafer to be cleaned with a brush at a rotation rate of 200 rpm or less to prepare a brush cleaned wafer; and a cleaning operation comprising cleaning the brush cleaned wafer with a cleaning solution to prepare a cleaned bare wafer, wherein the cleaning operation comprises a first cleaning operation and a second cleaning operation sequentially.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 24, 2022
    Applicant: SENIC INC.
    Inventors: Jong Hwi PARK, Il Hwan YOO, Kap-Ryeol KU, Jung-Gyu KIM, Jung Woo CHOI, Eun Su YANG, Byung Kyu JANG, Sang Ki KO
  • Publication number: 20220064817
    Abstract: A silicon carbide ingot manufacturing method and a silicon carbide ingot manufacturing system are provided. The silicon carbide ingot manufacturing method and the silicon carbide ingot manufacturing system may change a temperature gradient depending on the growth of an ingot by implementing a guide which has a tilted angle to an external direction from the interior of a reactor, in an operation to grow an ingot during a silicon carbide ingot manufacturing process.
    Type: Application
    Filed: August 23, 2021
    Publication date: March 3, 2022
    Applicant: SENIC INC.
    Inventors: Jong Hwi PARK, Kap-Ryeol KU, Jung-Gyu KIM, Jung Woo CHOI, Sang Ki KO, Byung Kyu JANG, Eun Su YANG, Jung Doo SEO
  • Publication number: 20210388527
    Abstract: A wafer having relaxation moduli different by 450 GPa or less, as determined by dynamic mechanical analysis, when loaded to 1 N and 18 N with a loading rate of 0.1 N/min at a temperature of 25° C.
    Type: Application
    Filed: March 5, 2021
    Publication date: December 16, 2021
    Applicant: SKC Co., Ltd.
    Inventors: Jong Hwi PARK, Jongmin SHIM, Eun Su YANG, Yeon Sik LEE, Byung Kyu JANG, Jung Woo CHOI, Sang Ki KO, Kap-Ryeol KU, Jung-Gyu KIM
  • Publication number: 20210372003
    Abstract: A method of manufacturing a silicon carbide ingot, includes a preparing operation of adjusting internal space of a reactor in which silicon carbide raw materials and a seed crystal are disposed to have a high vacuum atmosphere, a proceeding operation of injecting an inert gas into the internal space, heating the internal space by moving a heater surrounding the reactor to induce the silicon carbide raw materials to sublimate, and growing the silicon carbide ingot on the seed crystal, and a cooling operation of cooling the temperature of the internal space to room temperature. The moving of the heater has a relative position which becomes more distant at a rate of 0.1 mm/hr to 0.48 mm/hr based on the seed crystal.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 2, 2021
    Applicant: SKC Co., Ltd
    Inventors: Byung Kyu JANG, Jong Hwi PARK, Eun Su YANG, Jung Woo CHOI, Sang Ki KO, Kap-Ryeol KU, Jung-Gyu KIM
  • Publication number: 20210372005
    Abstract: A wafer manufacturing method, an epitaxial wafer manufacturing method, and a wafer and epitaxial wafer manufactured thereby, are provided. The wafer manufacturing method enables the manufacture of a wafer with a low density of micropipe defects and minimum numbers of particles and scratches. The epitaxial wafer manufacturing method enables the manufacture of an epitaxial wafer that has low densities of defects such as downfall, triangular, and carrot defects, exhibits excellent device characteristics, and improves the yield of devices.
    Type: Application
    Filed: November 3, 2020
    Publication date: December 2, 2021
    Applicant: SKC Co., Ltd.
    Inventors: Jong Hwi PARK, Jung-Gyu KIM, Eun Su YANG, Byung Kyu JANG, Jung Woo CHOI, Yeon Sik LEE, Sang Ki KO, Kap-Ryeol KU
  • Publication number: 20210317593
    Abstract: A silicon carbide ingot producing method is provided. The method produces a silicon carbide ingot in which an internal space of a reactor is depressurized and heated to create a predetermined difference in temperature between upper and lower portions of the internal space. The method produces a silicon carbide ingot in which a plane of a seed crystal corresponding to the rear surface of the silicon carbide ingot is lost minimally. Additionally, the method produces a silicon carbide ingot with few defects and good crystal quality.
    Type: Application
    Filed: November 3, 2020
    Publication date: October 14, 2021
    Applicant: SKC Co., Ltd.
    Inventors: Jong Hwi PARK, Eun Su YANG, Byung Kyu JANG, Jung Woo CHOI, Sang Ki KO, Kap-Ryeol KU, Jung-Gyu KIM
  • Publication number: 20210272793
    Abstract: An epitaxial wafer including a wafer having one surface and an other surface, and an epitaxial layer formed on the one surface of the wafer, wherein a roughness skewness (Rsk) of the one surface is ?3 nm to 3 nm, and a roughness average (Ra) of an edge area of the one surface is different from that of a central area of the one surface by ?2 nm to 2 nm when the edge area of the one surface is defined as an area between 13.3% and 32.1% of the radius of the wafer in a direction from the edge of the one surface toward the center thereof and the central area of the one surface is defined as an area at 9.4% of the radius of the wafer from the center of the one surface.
    Type: Application
    Filed: January 14, 2021
    Publication date: September 2, 2021
    Applicant: SKC Co., Ltd.
    Inventors: Jong Hwi PARK, Sang Ki KO, Kap-Ryeol KU, Jung-Gyu KIM, Eun Su YANG, Yeon Sik LEE
  • Publication number: 20210123157
    Abstract: A method for preparing a SiC ingot includes preparing a crucible assembly comprising a crucible body having an internal space, loading a raw material into the internal space of the crucible body and placing a plurality of SiC seed in the internal space of the crucible body at regular intervals spaced apart from the raw material, and growing the SiC ingot from the plurality of SiC seed by adjusting the internal space of the crucible body to a crystal growth atmosphere such that the raw material is vapor-transported and deposited to the plurality of SiC seed. A density of the crucible body may be 1.70 to 1.92 g/cm3.
    Type: Application
    Filed: May 22, 2020
    Publication date: April 29, 2021
    Applicant: SKC Co., Ltd.
    Inventors: Jong Hwi PARK, Myung-Ok KYUN, Jongmin SHIM, Eun Su YANG, Byung Kyu JANG, Jung Woo CHOI, Sang Ki KO, Kap-Ryeol KU, Jung-Gyu KIM