Patents by Inventor Eva E. Tois

Eva E. Tois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145506
    Abstract: Methods for selective deposition are provided. Material is selectively deposited on a first surface of a substrate relative to a second surface of a different material composition. An inhibitor, such as a polyimide layer, is selectively formed from vapor phase reactants on the first surface relative to the second surface. A layer of interest is selectively deposited from vapor phase reactants on the second surface relative to the first surface. The first surface can be metallic while the second surface is dielectric. Accordingly, material, such as a dielectric transition metal oxides and nitrides, can be selectively deposited on metallic surfaces relative dielectric surfaces using techniques described herein.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 12, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jan Willem Hub Maes, Michael Eugene Givens, Suvi P. Haukka, VamsI Paruchuri, Ivo Johannes Raaijmakers, Shaoren Deng, Andrea Illiberi, Eva E. Tois, Delphine Longrie
  • Patent number: 11094535
    Abstract: Methods for selective deposition, and structures thereof, are provided. Material is selectively deposited on a first surface of a substrate relative to a second surface of a different material composition. A passivation layer is selectively formed from vapor phase reactants on the first surface while leaving the second surface without the passivation layer. A layer of interest is selectively deposited from vapor phase reactants on the second surface relative to the passivation layer. The first surface can be metallic while the second surface is dielectric, or the second surface is dielectric while the second surface is metallic. Accordingly, material, such as a dielectric, can be selectively deposited on either metallic or dielectric surfaces relative to the other type of surface using techniques described herein. Techniques and resultant structures are also disclosed for control of positioning and shape of layer edges relative to boundaries between underlying disparate materials.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: August 17, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eva E. Tois, Suvi P. Haukka, Raija H. Matero, Elina Färm, Delphine Longrie, Hidemi Suemori, Jan Willem Maes, Marko Tuominen, Shaoren Deng, Ivo Johannes Raaijmakers, Andrea Illiberi
  • Publication number: 20210175092
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity. Masking applications employing selective organic films are provided. Post-deposition modification of the organic films, such as metallic infiltration and/or carbon removal, is also disclosed.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 10, 2021
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma, Jan Willem Maes, Delphine Longrie, Krzysztof Kachel
  • Publication number: 20210151324
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
    Type: Application
    Filed: October 23, 2020
    Publication date: May 20, 2021
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma
  • Publication number: 20210115559
    Abstract: Passivation layers to inhibit vapor deposition can be used on reactor surfaces to minimize deposits while depositing on a substrate housed therein, or on particular substrate surfaces, such as metallic surfaces on semiconductor substrates to facilitate selective deposition on adjacent dielectric surfaces. Passivation agents that are smaller than typical self-assembled monolayer precursors can have hydrophobic or non-reactive ends and facilitate more dense passivation layers more quickly than self-assembled monolayers, particularly over complex three-dimensional structures.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Varun Sharma, Eva E. Tois
  • Publication number: 20210118669
    Abstract: Methods and systems for selectively depositing dielectric films on a first surface of a substrate relative to a passivation layer previously deposited on a second surface are provided. The methods can include at least one cyclical deposition process used to deposit material on the first surface while the passivation layer is removed, thereby preventing deposition over the passivation layer.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 22, 2021
    Inventors: Eva E. Tois, Viljami J. Pore
  • Patent number: 10923361
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity. Masking applications employing selective organic films are provided. Post-deposition modification of the organic films, such as metallic infiltration and/or carbon removal, is also disclosed.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: February 16, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma, Jan Willem Maes, Delphine Longrie, Krzysztof Kachel
  • Patent number: 10854460
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 1, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma
  • Publication number: 20200181769
    Abstract: Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 11, 2020
    Inventors: Tom E. Blomberg, Eva E. Tois, Robert Huggare, Jan Willem Maes, Vladimir Machkaoutsan, Dieter Pierreux
  • Publication number: 20200105515
    Abstract: Methods for selective deposition are provided. Material is selectively deposited on a first surface of a substrate relative to a second surface of a different material composition. An inhibitor, such as a polyimide layer, is selectively formed from vapor phase reactants on the first surface relative to the second surface. A layer of interest is selectively deposited from vapor phase reactants on the second surface relative to the first surface. The first surface can be metallic while the second surface is dielectric. Accordingly, material, such as a dielectric transition metal oxides and nitrides, can be selectively deposited on metallic surfaces relative dielectric surfaces using techniques described herein.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Applicant: ASM IP Holding B.V.
    Inventors: Jan Willem Hub Maes, Michael Eugene Givens, Suvi P. Haukka, Vamsi Paruchuri, Ivo Johannes Raaijmakers, Shaoren Deng, Andrea Illiberi, Eva E. Tois, Delphine Longrie
  • Publication number: 20200051829
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity. Masking applications employing selective organic films are provided. Post-deposition modification of the organic films, such as metallic infiltration and/or carbon removal, is also disclosed.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma, Jan Willem Maes, Delphine Longrie, Krzysztof Kachel
  • Patent number: 10553440
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD. Nickel thin films can be used directly in silicidation and germanidation processes.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: February 4, 2020
    Assignee: ASM International N.V.
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Patent number: 10513772
    Abstract: Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: December 24, 2019
    Assignee: ASM International N.V.
    Inventors: Tom E. Blomberg, Eva E. Tois, Robert Huggare, Jan Willem Maes, Vladimir Machkaoutsan, Dieter Pierreux
  • Publication number: 20190333761
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma
  • Patent number: 10453701
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity. Masking applications employing selective organic films are provided. Post-deposition modification of the organic films, such as metallic infiltration and/or carbon removal, is also disclosed.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 22, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma, Jan Willem Maes, Delphine Longrie, Krzysztof Kachel
  • Patent number: 10373820
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 6, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma
  • Publication number: 20190081149
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
    Type: Application
    Filed: July 20, 2018
    Publication date: March 14, 2019
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Publication number: 20180233350
    Abstract: Methods for selective deposition, and structures thereof, are provided. Material is selectively deposited on a first surface of a substrate relative to a second surface of a different material composition. A passivation layer is selectively formed from vapor phase reactants on the first surface while leaving the second surface without the passivation layer. A layer of interest is selectively deposited from vapor phase reactants on the second surface relative to the passivation layer. The first surface can be metallic while the second surface is dielectric, or the second surface is dielectric while the second surface is metallic. Accordingly, material, such as a dielectric, can be selectively deposited on either metallic or dielectric surfaces relative to the other type of surface using techniques described herein. Techniques and resultant structures are also disclosed for control of positioning and shape of layer edges relative to boundaries between underlying disparate materials.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Eva E. Tois, Suvi P. Haukka, Raija H. Matero, Elina Färm, Delphine Longrie, Hidemi Suemori, Jan Willem Maes, Marko Tuominen, Shaoren Deng, Ivo Johannes Raaijmakers, Andrea Illiberi
  • Patent number: 10043880
    Abstract: In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 7, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Viljami J. Pore, Suvi P. Haukka, Tom E. Blomberg, Eva E. Tois
  • Publication number: 20180151345
    Abstract: Methods are provided herein for deposition of oxide films. Oxide films may be deposited, including selective deposition of oxide thin films on a first surface of a substrate relative to a second, different surface of the same substrate. For example, an oxide thin film such as an insulating metal oxide thin film may be selectively deposited on a first surface of a substrate relative to a second, different surface of the same substrate. The second, different surface may be an organic passivation layer.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Suvi P. Haukka, Elina Färm, Raija H. Matero, Eva E. Tois, Hidemi Suemori, Antti Juhani Niskanen, Sung-Hoon Jung, Petri Räisänen