Patents by Inventor Eva Thanasiu

Eva Thanasiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11794172
    Abstract: Methods are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Rachael Jean Harrington, Eva Thanasiu, Hungwen Jen, Giovanni Cavataio, Jeffrey Scott Hepburn
  • Publication number: 20230250747
    Abstract: A catalytic converter system having oxygen storage materials is disclosed and methods for determining whether to reactivate oxygen storage materials and monitoring failure events of the oxygen storage materials are also disclosed.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Applicant: Ford Global Technologies, LLC
    Inventors: Jason Wu, Eva Thanasiu, Giovanni Cavataio, Carolyn Parks Hubbard, Andrew Gregory Getsoian, Yisun Cheng, Natalie Roxas, Michael James Uhrich
  • Patent number: 11629627
    Abstract: A catalytic converter system having oxygen storage materials is disclosed and methods for determining whether to reactivate oxygen storage materials and monitoring failure events of the oxygen storage materials are also disclosed.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: April 18, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Jason Wu, Eva Thanasiu, Giovanni Cavataio, Carolyn Parks Hubbard, Andrew Gregory Getsoian, Yisun Cheng, Natalie Roxas, Michael James Uhrich
  • Publication number: 20220341359
    Abstract: A catalytic converter system having oxygen storage materials is disclosed and methods for determining whether to reactivate oxygen storage materials and monitoring failure events of the oxygen storage materials are also disclosed.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Applicant: Ford Global Technologies, LLC
    Inventors: Jason Wu, Eva Thanasiu, Giovanni Cavataio, Carolyn Parks Hubbard, Andrew Gregory Getsoian, Yisun Cheng, Natalie Roxas, Michael James Uhrich
  • Patent number: 11203961
    Abstract: Methods and systems are provided for emissions control of a vehicle. In one example, an emissions treatment device includes a porous substrate and a catalytic washcoat disposed thereon, the catalytic washcoat having nickel and no other metal. The porous substrate may be configured to filter particulate matter (PM) exiting the vehicle and the catalytic washcoat may be configured to oxidize at least a portion of the PM. The nickel in the catalytic washcoat may provide additional oxygen storage capacity and increased tolerance to sulfur poisoning of catalytic activity of the catalytic washcoat, further promoting PM oxidation. Moreover, because the catalytic washcoat may increase PM oxidation during passive regeneration events, a total number of active regeneration events may be decreased and fuel economy may be maintained.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: December 21, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Timothy Brian Chanko, Xin Liu, Douglas Allen Dobson, Giovanni Cavataio, Eva Thanasiu
  • Publication number: 20210387170
    Abstract: Methods are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Rachael Jean Harrington, Eva Thanasiu, Hungwen Jen, Giovanni Cavataio, Jeffrey Scott Hepburn
  • Patent number: 11167272
    Abstract: Methods and systems are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 9, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Rachael Jean Harrington, Eva Thanasiu, Hungwen Jen, Giovanni Cavataio, Jeffrey Scott Hepburn
  • Publication number: 20210285354
    Abstract: Methods and systems are provided for emissions control of a vehicle. In one example, an emissions treatment device includes a porous substrate and a catalytic washcoat disposed thereon, the catalytic washcoat having nickel and no other metal. The porous substrate may be configured to filter particulate matter (PM) exiting the vehicle and the catalytic washcoat may be configured to oxidize at least a portion of the PM. The nickel in the catalytic washcoat may provide additional oxygen storage capacity and increased tolerance to sulfur poisoning of catalytic activity of the catalytic washcoat, further promoting PM oxidation. Moreover, because the catalytic washcoat may increase PM oxidation during passive regeneration events, a total number of active regeneration events may be decreased and fuel economy may be maintained.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Inventors: Timothy Brian Chanko, Xin Liu, Douglas Allen Dobson, Giovanni Cavataio, Eva Thanasiu
  • Patent number: 11073061
    Abstract: Methods and systems are provided for a multicomponent aftertreatment device arranged in a vehicle exhaust gas passage. In one example, a system may include an oxygen storage catalyst and an underbody trap catalyst comprising metal modified zeolite, the oxygen storage catalyst arranged upstream of the underbody trap catalyst in an exhaust passage of the vehicle.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 27, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Gang Guo, Jason Lupescu, Giovanni Cavataio, Eva Thanasiu, Hungwen Jen, Jeffrey Scott Hepburn
  • Publication number: 20210016257
    Abstract: Methods and systems are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 21, 2021
    Inventors: Rachael Jean Harrington, Eva Thanasiu, Hungwen Jen, Giovanni Cavataio, Jeffrey Scott Hepburn
  • Publication number: 20200095915
    Abstract: Methods and systems are provided for a multicomponent aftertreatment device arranged in a vehicle exhaust gas passage. In one example, a system may include an oxygen storage catalyst and an underbody trap catalyst comprising metal modified zeolite, the oxygen storage catalyst arranged upstream of the underbody trap catalyst in an exhaust passage of the vehicle.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Gang Guo, Jason Lupescu, Giovanni Cavataio, Eva Thanasiu, Hungwen Jen, Jeffrey Scott Hepburn
  • Patent number: 10337374
    Abstract: Methods and systems are provided for a steam reforming catalyst. In one example, a method may include flowing exhaust gas from a first cylinder bank directly to a three-way catalyst, flowing exhaust gas from a second cylinder bank directly to a steam reforming catalyst, and flowing exhaust gas from the steam reforming catalyst to the three-way catalyst.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Rachel Alison Snow, Eva Thanasiu, Paul M. Laing, Giovanni Cavataio
  • Publication number: 20180266292
    Abstract: Methods and systems are provided for a steam reforming catalyst. In one example, a method may include flowing exhaust gas from a first cylinder bank directly to a three-way catalyst, flowing exhaust gas from a second cylinder bank directly to a steam reforming catalyst, and flowing exhaust gas from the steam reforming catalyst to the three-way catalyst.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Rachel Alison Snow, Eva Thanasiu, Paul M. Laing, Giovanni Cavataio
  • Patent number: 9919294
    Abstract: Phosphorus tolerant or resistant three-way catalysts (TWC) are disclosed. The TWC may include a substrate defining a plurality of channels. It may include front and rear washcoat portions overlying the substrate and having respective first and second washcoat loadings, the first washcoat loading being at most 2.0 g/in3 and less than the second washcoat loading. The front washcoat portion may include a catalyst material supported on a support material comprising a cerium oxide, such as ceria or CZO, or a pre-phosphated material, such as AlPO4, or CePO4. In one embodiment, the support material may comprise at least 85 wt. % of a cerium oxide or at least 85 wt. % of a phosphate-containing material. The front portion and the underlying substrate may comprise from 3 to 25 vol. % of the three-way catalyst or the front portion may overly up to an initial 15% of an axial length of the substrate.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: March 20, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Paul M. Laing, Carolyn Parks Hubbard, Jeffrey Scott Hepburn, Eva Thanasiu, Giovanni Cavataio, Hungwen Jen, Mark John Jagner, Rachael Jean Harrington, Michael Daniel Shane
  • Patent number: 9863348
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 9, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, David Karl Bidner, James Michael Kerns, Nian Xiao, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, Jeffrey Scott Hepburn
  • Publication number: 20170312740
    Abstract: Phosphorus tolerant or resistant three-way catalysts (TWC) are disclosed. The TWC may include a substrate defining a plurality of channels. It may include front and rear washcoat portions overlying the substrate and having respective first and second washcoat loadings, the first washcoat loading being at most 2.0 g/in3 and less than the second washcoat loading. The front washcoat portion may include a catalyst material supported on a support material comprising a cerium oxide, such as ceria or CZO, or a pre-phosphated material, such as AlPO4, or CePO4. In one embodiment, the support material may comprise at least 85 wt. % of a cerium oxide or at least 85 wt. % of a phosphate-containing material. The front portion and the underlying substrate may comprise from 3 to 25 vol. % of the three-way catalyst or the front portion may overly up to an initial 15% of an axial length of the substrate.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Paul M. LAING, Carolyn Parks HUBBARD, Jeffrey Scott HEPBURN, Eva THANASIU, Giovanni CAVATAIO, Hungwen JEN, Mark John JAGNER, Rachael Jean HARRINGTON, Michael Daniel SHANE
  • Patent number: 9403157
    Abstract: A three-way catalyst including a mixture of nickel and copper is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle engine exhausts. The catalyst is impregnated onto a carrier substrate which is non-reactive with nickel and copper. When used in a vehicle exhaust gas treatment system, the nickel-copper catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts and provides enhanced oxygen storage capacity (OSC) and water-gas-shift (WGS) functions.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 2, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Hungwen Jen, Eva Thanasiu, Jeffrey Scott Hepburn
  • Patent number: 9394844
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: July 19, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, Jeffrey Scott Hepburn, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, David Karl Bidner
  • Publication number: 20150053190
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, Jeffrey Scott Hepburn, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, David Karl Bidner
  • Patent number: 8875494
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, Jeffrey Scott Hepburn, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, David Karl Bidner