Patents by Inventor Eva Tois

Eva Tois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9514956
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 6, 2016
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Publication number: 20160222504
    Abstract: Methods are provided for selectively depositing a surface of a substrate relative to a second, different surface. An exemplary deposition method can include selectively depositing a material, such as a material comprising nickel, nickel nitride, cobalt, iron, and/or titanium oxide on a first surface, such as a SiO2 surface, relative to a second, different surface, such as a H-terminated surface, of the same substrate. Methods can include treating a surface of the substrate to provide H-terminations prior to deposition.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Suvi P. Haukka, Eva Tois
  • Publication number: 20160118262
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Application
    Filed: July 29, 2015
    Publication date: April 28, 2016
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Publication number: 20150299848
    Abstract: Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 22, 2015
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore
  • Patent number: 9127351
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 8, 2015
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Publication number: 20150217330
    Abstract: Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 6, 2015
    Inventors: Suvi P. Haukka, Raija H. Matero, Eva Tois, Antti Niskanen, Marko Tuominen, Hannu Huotari, Viljami J. Pore, Ivo Raaijmakers
  • Patent number: 8993055
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 31, 2015
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 8871617
    Abstract: In one aspect, methods of forming mixed metal thin films comprising at least two different metals are provided. In some embodiments, a mixed metal oxide thin film is formed by atomic layer deposition and subsequently reduced to a mixed metal thin film. Reduction may take place, for example, in a hydrogen atmosphere. The presence of two or more metals in the mixed metal oxide allows for reduction at a lower reduction temperature than the reduction temperature of the individual oxides of the metals in the mixed metal oxide film.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 28, 2014
    Assignee: ASM IP Holding B.V.
    Inventors: Viljami J. Pore, Eva Tois
  • Publication number: 20120302055
    Abstract: In one aspect, methods of forming mixed metal thin films comprising at least two different metals are provided. In some embodiments, a mixed metal oxide thin film is formed by atomic layer deposition and subsequently reduced to a mixed metal thin film. Reduction may take place, for example, in a hydrogen atmosphere. The presence of two or more metals in the mixed metal oxide allows for reduction at a lower reduction temperature than the reduction temperature of the individual oxides of the metals in the mixed metal oxide film.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 29, 2012
    Applicant: ASM IP HOLDING B.V.
    Inventors: Viljami J. Pore, Eva Tois
  • Publication number: 20110104906
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Patent number: 7824492
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: November 2, 2010
    Assignee: ASM International N.V.
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Patent number: 7771534
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporizable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporized, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 10, 2010
    Assignee: ASM International N.V.
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Patent number: 7771533
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2 with sufficiently short reaction times.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: August 10, 2010
    Assignee: ASM International N.V.
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Publication number: 20070163488
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Application
    Filed: December 22, 2006
    Publication date: July 19, 2007
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Publication number: 20070148350
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Application
    Filed: October 27, 2006
    Publication date: June 28, 2007
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Publication number: 20070054048
    Abstract: A catalytic reactant with a low activation energy barrier for oxide formation can be used to facilitate atomic layer deposition type reactions at reduced temperatures, thus increasing the quality of the deposited films. An initial reaction with a catalytic reactant provides localized heat at the substrate surface in the vicinity of the reactant. This localized heat facilitates a second reaction and deposition of the desired thin film. The processes may be used to deposit arrays of nanodots.
    Type: Application
    Filed: September 7, 2005
    Publication date: March 8, 2007
    Inventors: Suvi Haukka, Eva Tois
  • Publication number: 20040065253
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Application
    Filed: October 3, 2003
    Publication date: April 8, 2004
    Inventors: Eva Tois, Suvi Haukka, Marko Tuominen
  • Publication number: 20030188682
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Application
    Filed: August 27, 2002
    Publication date: October 9, 2003
    Applicant: ASM Microchemistry OY
    Inventors: Eva Tois , Suvi Haukka , Marko Tuominen