Patents by Inventor Evan House
Evan House has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11258070Abstract: Provided is a bi-polar electrode for a battery, wherein the bi-polar electrode comprises: (a) a current collector comprising a conductive material foil (e.g. metal foil) having a thickness from 10 nm to 100 ?m and two opposed, parallel primary surfaces, wherein one or both of the primary surfaces is coated with a layer of graphene material having a thickness from 10 nm to 10 ?m; and (b) a negative electrode layer and a positive electrode layer respectively disposed on the two sides of the current collector, each in physical contact with the layer of graphene material or directly with a primary surface of the conductive material foil (if not coated with a graphene material layer). Also provided is a battery comprising multiple (e.g. 2-300) bipolar electrodes internally connected in series. There can be multiple bi-polar electrodes that are connected in parallel.Type: GrantFiled: September 24, 2019Date of Patent: February 22, 2022Assignee: Global Graphene Group, Inc.Inventors: Evan House, Aruna Zhamu, Bor Z. Jang
-
Patent number: 11121359Abstract: Provided is a bi-polar electrode for a battery, the electrode comprising: (a) a current collector comprising a conductive material foil (e.g. metal foil) having a thickness from 10 nm to 100 ?m and two opposed, parallel primary surfaces, wherein one or both of the primary surfaces is coated with a layer of exfoliated graphite or expanded graphite material having a thickness from 10 nm to 50 ?m; and (b) a negative electrode layer and a positive electrode layer respectively disposed on the two sides of the current collector, each in physical contact with the layer of exfoliated graphite or expanded graphite material or directly with a primary surface of the conductive material foil (if not coated with a exfoliated or expanded graphite layer). Also provided is a battery comprising multiple (e.g. 2-300) bipolar electrodes internally connected in series. There can be multiple bi-polar electrodes that are connected in parallel.Type: GrantFiled: October 10, 2019Date of Patent: September 14, 2021Assignee: Global Graphene Group, Inc.Inventors: Evan House, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20210111391Abstract: Provided is a bi-polar electrode for a battery, the electrode comprising: (a) a current collector comprising a conductive material foil (e.g. metal foil) having a thickness from 10 nm to 100 ?m and two opposed, parallel primary surfaces, wherein one or both of the primary surfaces is coated with a layer of exfoliated graphite or expanded graphite material having a thickness from 10 nm to 50 ?m; and (b) a negative electrode layer and a positive electrode layer respectively disposed on the two sides of the current collector, each in physical contact with the layer of exfoliated graphite or expanded graphite material or directly with a primary surface of the conductive material foil (if not coated with a exfoliated or expanded graphite layer). Also provided is a battery comprising multiple (e.g. 2-300) bipolar electrodes internally connected in series. There can be multiple bi-polar electrodes that are connected in parallel.Type: ApplicationFiled: October 10, 2019Publication date: April 15, 2021Applicant: Nanotek Instruments, Inc.Inventors: Evan House, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20210091383Abstract: Provided is a bi-polar electrode for a battery, wherein the bi-polar electrode comprises: (a) a current collector comprising a conductive material foil (e.g. metal foil) having a thickness from 10 nm to 100 ?m and two opposed, parallel primary surfaces, wherein one or both of the primary surfaces is coated with a layer of graphene material having a thickness from 10 nm to 10 ?m; and (b) a negative electrode layer and a positive electrode layer respectively disposed on the two sides of the current collector, each in physical contact with the layer of graphene material or directly with a primary surface of the conductive material foil (if not coated with a graphene material layer). Also provided is a battery comprising multiple (e.g. 2-300) bipolar electrodes internally connected in series. There can be multiple bi-polar electrodes that are connected in parallel.Type: ApplicationFiled: September 24, 2019Publication date: March 25, 2021Applicant: Nanotek Instruments, Inc.Inventors: Evan House, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20210091368Abstract: Provided is a process for producing a bi-polar electrode for a battery or capacitor, the process comprising: (a) providing a conductive material foil having a thickness from 10 nm to 100 ?m and two opposing parallel primary surfaces, and coating one or both of the primary surfaces with a layer of graphene material having a thickness from 5 nm to 50 ?m to form a graphene-coated current collector; and (b) depositing a negative electrode layer and a positive electrode layer respectively onto two opposing primary surfaces of the graphene-coated current collector, wherein the negative electrode layer is in physical contact with the layer of graphene material or in direct contact with a primary surface of the conductive material foil and the positive electrode layer is in physical contact with the layer of graphene material or directly with the opposing primary surface of the conductive material foil.Type: ApplicationFiled: September 24, 2019Publication date: March 25, 2021Applicant: Nanotek Instruments, Inc.Inventors: Evan House, Aruna Zhamu, Bor Z. Jang
-
Patent number: 9083007Abstract: A continuous prismatic cell stacking system and method are disclosed. The continuous prismatic cell stacking system, comprises: a frame; a conveyer belt; a plurality of air suction pans; at least three units for distributing separator including separator spool, positioning sensor of separator layer, upper roller of separator layer, lower roller of separator layer and cutter of separator layer; at least one unit for distributing cathode including cathode spool, positioning sensor of cathode layer, upper roller of cathode layer, lower roller of cathode layer, and cutter of cathode layer; and at least one unit for distributing anode including anode spool, positioning sensor of anode layer, upper roller of anode layer, lower roller of anode layer, and cutter of anode layer.Type: GrantFiled: April 13, 2011Date of Patent: July 14, 2015Assignee: Microvast, Inc.Inventors: Yang Wu, Xiang Li, Evan House
-
Publication number: 20130111739Abstract: A continuous prismatic cell stacking system and method are disclosed. The continuous prismatic cell stacking system, comprises: a frame; a conveyer belt; a plurality of air suction pans; at least three units for distributing separator including separator spool, positioning sensor of separator layer, upper roller of separator layer, lower roller of separator layer and cutter of separator layer; at least one unit for distributing cathode including cathode spool, positioning sensor of cathode layer, upper roller of cathode layer, lower roller of cathode layer, and cutter of cathode layer; and at least one unit for distributing anode including anode spool, positioning sensor of anode layer, upper roller of anode layer, lower roller of anode layer, and cutter of anode layer.Type: ApplicationFiled: April 13, 2011Publication date: May 9, 2013Applicant: Microvast, Inc.Inventors: Yang Wu, Xiang Li, Evan House
-
Patent number: 6479185Abstract: The present invention provides a module for retaining and cooling a group of primary or secondary electrochemical cells for use in powered devices. To provide more effective cooling and reduce thermal gradients, cells are aligned in a side-by-side configuration within a multi-pass cooling passage. The multi-pass cooling in each module results in potentially longer useful life for the entire array. Large array batteries are formed of multiple modules, the shape and configuration of the modules allowing a variety of compact combinations having high energy density. In one configuration of an array battery according to the invention, two decks of modules are stacked vertically within a rigid enclosure. Air as a cooling medium is induced through each module to reduce cell temperatures. Temperature monitoring of each cell in a module and array allow for maintenance and identification of thermal events effecting continued long term operation.Type: GrantFiled: April 4, 2000Date of Patent: November 12, 2002Assignee: Moltech Power Systems, Inc.Inventors: H. Coleman Hilderbrand, V. Evan House, Martin C. Orler