Patents by Inventor Evan Lewis Olson

Evan Lewis Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250085177
    Abstract: Apparatus includes a sample holder with a cavity and a plurality of devices configured to hold a curvature of a curved substrate in a fixed configuration. Apparatus includes two prisms with a viewing apparatus of the sample holder configured to translate therebetween. Methods can include disposing the curved substrate in the sample holder, transmitting a first beam, translating the sample holder, and transmitting a second beam. Alternatively, apparatus include a light scattering-polarimetry sub-system configured to emit a first beam to impinge an end surface of coupling prism and detect at least a portion of the first beam impinging the first surface of the coupling prism. The apparatus includes an evanescent prism coupling spectroscopy sub-system configured to emit a second beam to impinge a first surface of the coupling system and detect at least a portion of the second beam impinging the second surface of the coupling prism.
    Type: Application
    Filed: September 5, 2024
    Publication date: March 13, 2025
    Inventors: Ryan Claude Andrews, David Matthew Berg, Pierre Michel Bouzi, William John Furnas, Jacob Immerman, Jeremiah Robert Jacobson, Katherine Anne Lindberg, Andrew Allen Lindstrand, Glenn Abram Newcomer, Evan Lewis Olson, Babak Robert Raj, Nathaniel David Wetmore
  • Publication number: 20240175812
    Abstract: A scattered light polarimetry (LSP) sub-system of a hybrid system for characterizing stress in a chemically-strengthened (CS) substrate having a top-surface and a near-surface waveguide, includes a LSP light source system, an LSP light source actuator coupled to the LSP light source system, and an optical compensator within an optical path of a LSP laser beam emitted by the LSP light source system. The optical compensator includes a half-wave plate, a half-wave plate actuator, a diffuser, and a diffuser actuator. The LSP sub-system further includes a LSP detector system in optical communication with the optical compensator through an LSP coupling prism having a LSP coupling surface, a focusing lens and a focusing lens actuator, and a support plenum having a surface and a measurement aperture, the support plenum configured to support the CS substrate at a measurement plane at the measurement aperture, and to operably support the LSP coupling prism.
    Type: Application
    Filed: November 28, 2023
    Publication date: May 30, 2024
    Inventors: Ryan Claude Andrews, David Matthew Berg, Pierre Michel Bouzi, William John Furnas, Christopher David Gee, Jacob Immerman, Andrew Allen Lindstrand, Glenn Abram Newcomer, Evan Lewis Olson, Melbourne Thompson Turnbull, IV, Nathaniel David Wetmore
  • Patent number: 11860090
    Abstract: Systems and methods of performing a stress measurement of a chemically strengthened glass using a light-scattering polarimetry system include adjusting the intensity of a light beam from a light source in an illumination system using a rotatable half-wave plate and a first polarizer operably disposed between the light source and a rotating light diffuser that has a rotation time tR. The first polarizer is aligned with a second polarizer in a downstream optical compensator to have matching polarization directions by rotating the rotatable half-wave plate to a position where the exposure time tE falls within an exposure range tR?tE. The method also includes performing an exposure using the exposure time tE to obtain the stress measurement. One or both of the half-wave plate and first polarizer can be tilted to avoid deleterious back-reflected light from entering the light source.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: January 2, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ryan Claude Andrews, Pierre Michel Bouzi, William John Furnas, Jacob Immerman, Jeremiah Robert Jacobson, Katherine Anne Lindberg, Evan Lewis Olson, Nathaniel David Wetmore
  • Patent number: 11852549
    Abstract: The hybrid measurement system includes an evanescent prism coupling spectroscopy (EPCS) sub-system and a light-scattering polarimetry (LSP) sub-system. The EPCS sub-system includes an EPCS light source system optically coupled to an EPCS detector system through an EPCS coupling prism. The LSP sub-system includes an LSP light source optically coupled to an optical compensator, which in turn is optically coupled to a LSP detector system via a LSP coupling prism. A support structure supports the EPCS and LSP coupling prisms to define a coupling prism assembly, which supports the two prisms at a measurement location. Stress measurements made using the EPCS and LSP sub-systems are combined to fully characterize the stress properties of a transparent chemically strengthened substrate. Methods of processing the EPCS and LSP measurements and enhanced configurations of the EPCS and LPS sub-systems to improve measurement accuracy are also disclosed.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: December 26, 2023
    Assignee: Corning Incorporated
    Inventors: Ryan Claude Andrews, David Matthew Berg, Pierre Michel Bouzi, William John Furnas, Jacob Immerman, Jeremiah Robert Jacobson, Katherine Anne Lindberg, Glenn Abram Newcomer, Evan Lewis Olson, Viktor Stepanov, Nathaniel David Wetmore
  • Publication number: 20220317041
    Abstract: Systems and methods of performing a stress measurement of a chemically strengthened glass using a light-scattering polarimetry system include adjusting the intensity of a light beam from a light source in an illumination system using a rotatable half-wave plate and a first polarizer operably disposed between the light source and a rotating light diffuser that has a rotation time tR. The first polarizer is aligned with a second polarizer in a downstream optical compensator to have matching polarization directions by rotating the rotatable half-wave plate to a position where the exposure time tE falls within an exposure range tR?tE. The method also includes performing an exposure using the exposure time tE to obtain the stress measurement. One or both of the half-wave plate and first polarizer can be tilted to avoid deleterious back-reflected light from entering the light source.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Inventors: Ryan Claude Andrews, Pierre Michel Bouzi, William John Furnas, Jacob Immerman, Jeremiah Robert Jacobson, Katherine Anne Lindberg, Evan Lewis Olson, Nathaniel David Wetmore
  • Publication number: 20220276106
    Abstract: The hybrid measurement system includes an evanescent prism coupling spectroscopy (EPCS) sub-system and a light-scattering polarimetry (LSP) sub-system. The EPCS sub-system includes an EPCS light source system optically coupled to an EPCS detector system through an EPCS coupling prism. The LSP sub-system includes an LSP light source optically coupled to an optical compensator, which in turn is optically coupled to a LSP detector system via a LSP coupling prism. A support structure supports the EPCS and LSP coupling prisms to define a coupling prism assembly, which supports the two prisms at a measurement location. Stress measurements made using the EPCS and LSP sub-systems are combined to fully characterize the stress properties of a transparent chemically strengthened substrate. Methods of processing the EPCS and LSP measurements and enhanced configurations of the EPCS and LPS sub-systems to improve measurement accuracy are also disclosed.
    Type: Application
    Filed: February 21, 2022
    Publication date: September 1, 2022
    Inventors: Ryan Claude Andrews, David Matthew Berg, Pierre Michel Bouzi, William John Furnas, Jacob Immerman, Jeremiah Robert Jacobson, Katherine Anne Lindberg, Glenn Abram Newcomer, Evan Lewis Olson, Viktor Stepanov, Nathaniel David Wetmore
  • Patent number: 11105612
    Abstract: The hybrid measurement system includes an evanescent prism coupling spectroscopy (EPCS) sub-system and a light-scattering polarimetry (LSP) sub-system. The EPCS sub-system includes an EPCS light source optically coupled to an EPCS detector system through an EPCS coupling prism. The LSP sub-system includes an LSP light source optically coupled to an optical compensator, which in turn is optically coupled to a LSP detector system via a LSP coupling prism. A support structure supports the EPCS and LSP coupling prisms to define a coupling prism assembly, which supports the two prisms at a measurement location. Stress measurements made using the EPCS and LSP sub-systems are combined to fully characterize the stress properties of a transparent chemically strengthened substrate. Methods of processing the EPCS and LSP measurements to improve measurement accuracy are also disclosed.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: August 31, 2021
    Assignee: Corning Incorporated
    Inventors: Ryan Claude Andrews, Pierre Michel Bouzi, William John Furnas, Jeremiah Robert Jacobson, Glenn Abram Newcomer, Evan Lewis Olson, Babak Robert Raj, Rostislav Vatchev Roussev, Viktor Stepanov, Nathaniel David Wetmore
  • Publication number: 20200300615
    Abstract: The hybrid measurement system includes an evanescent prism coupling spectroscopy (EPCS) sub-system and a light-scattering polarimetry (LSP) sub-system. The EPCS sub-system includes an EPCS light source optically coupled to an EPCS detector system through an EPCS coupling prism. The LSP sub-system includes an LSP light source optically coupled to an optical compensator, which in turn is optically coupled to a LSP detector system via a LSP coupling prism. A support structure supports the EPCS and LSP coupling prisms to define a coupling prism assembly, which supports the two prisms at a measurement location. Stress measurements made using the EPCS and LSP sub-systems are combined to fully characterize the stress properties of a transparent chemically strengthened substrate. Methods of processing the EPCS and LSP measurements to improve measurement accuracy are also disclosed.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Ryan Claude Andrews, Pierre Michel Bouzi, William John Furnas, Jeremiah Robert Jacobson, Glenn Abram Newcomer, Evan Lewis Olson, Babak Robert Raj, Rostislav Vatchev Roussev, Viktor Stepanov, Nathaniel David Wetmore