Patents by Inventor Evan M. ZHAO

Evan M. ZHAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076646
    Abstract: A system and method for controlling metabolic enzymes or pathways in cells to produce a chemical above the levels of a wild-type strain is disclosed. The system utilizes cells, including yeasts, bacteria, and molds, having at least two genes capable of being controlled bi-directionally with light, where one gene is turned from off to on when exposed to light and another gene is turned from on to off when exposed to light, the two genes reversing when the light is turned off. Cells may utilize any number of sequences that benefit chemical production, including sequences that: encode for constitutive transcription of light-activated transcription factor fusions; encode for a metabolic enzyme; encode for a repressor; induce expression of metabolic enzymes; and an endogenous or exogenous activator expressed by a constitutive promoter, inducible promoter, or gene circuit.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: The Trustees of Princeton University
    Inventors: Jose L. AVALOS, Jared TOETTCHER, Evan M. ZHAO
  • Patent number: 11859223
    Abstract: A system and method for controlling metabolic enzymes or pathways in cells to produce a chemical above the levels of a wild-type strain is disclosed. The system utilizes cells, including yeasts, bacteria, and molds, having at least two genes capable of being controlled bi-directionally with light, where one gene is turned from off to on when exposed to light and another gene is turned from on to off when exposed to light, the two genes reversing when the light is turned off. Cells may utilize any number of sequences that benefit chemical production, including sequences that: encode for constitutive transcription of light-activated transcription factor fusions; encode for a metabolic enzyme; encode for a repressor; induce expression of metabolic enzymes; and an endogenous or exogenous activator expressed by a constitutive promoter, inducible promoter, or gene circuit.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: January 2, 2024
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Jose L. Avalos, Jared E. Toettcher, Evan M. Zhao
  • Patent number: 11746131
    Abstract: Provided herein is an isolated fusion protein comprising a light-responsive domain and a heterologous peptide component. Exposure of the fusion protein to light induces a conformational change in the fusion protein that alters an activity of the fusion protein and the activity is a binding activity selected from an in vitro binding activity, an in vivo extracellular binding activity and an in vivo intracellular binding activity. Also provided are methods of using and identifying the fusion proteins.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 5, 2023
    Assignee: The Trustees of Princeton University
    Inventors: Jared Toettcher, Jose Avalos, Maxwell Wilson, Alexander Goglia, Evan M. Zhao, Agnieszka Gil, Cesar Carrasco-Lopez
  • Publication number: 20230212626
    Abstract: Disclosed is a technique for constructing optogenetic amplifier and inverter circuits utilizing transcriptional activator/repressor pairs, in which expression of the transcriptional activator or repressor, respectively, is controlled by light-controlled transcription factors. This system is demonstrated utilizing the quinic acid regulon system from Neurospora crassa, or Q System, a transcriptional activator/repressor system. This is also demonstrated utilizing the galactose regulon from Saccharomyces cerevisiae, or GAL System. Such optogenetic amplifier circuits enable multi-phase microbial fermentations, in which different light schedules are applied in each phase to dynamically control different metabolic pathways for the production of proteins, fuels or chemicals.
    Type: Application
    Filed: December 22, 2022
    Publication date: July 6, 2023
    Applicant: The Trustees of Princeton University
    Inventors: Jose L. Avalos, Jared E. Toettcher, Evan M. Zhao, Makoto A. Lalwani
  • Publication number: 20230212592
    Abstract: The present disclosure provides genetic constructs comprising a recombinant internal ribosome entry site (IRES), which may be used as riboswitches to modulate translation of an operably-mRNA sequence encoding a protein of interest. In other aspects, the disclosure provides recombinant cells, methods, kits and systems that utilize the same, e.g., to provide a platform for modulating the expression of essentially any protein of interest in a eukaryotic cell.
    Type: Application
    Filed: June 11, 2021
    Publication date: July 6, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: James J. COLLINS, Evan M. ZHAO, Xiao TAN, Fei RAN, Angelo S. MAO, Helena DE PUIG GUIXE, Emma J. CHORY
  • Publication number: 20210062165
    Abstract: Provided herein is a system and method of optogenetically inducibly clustering metabolic enzymes for the production of chemicals using cell factories. More particularly, the described inducible protein clustering approach clusters metabolic enzymes by, e.g., a change in illumination conditions (either a switch from dark to light or from light to dark). Performing this clustering leads to an increase in the production of metabolites by the clustered enzymes. In some embodiments, a light-sensitive domain may be replaced with any inducible domain.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Applicant: The Trustees of Princeton University
    Inventors: Jose L. Avalos, Jared E. Toettcher, Clifford P. Brangwynne, Evan M. Zhao, Maxwell Z. Wilson
  • Publication number: 20200291075
    Abstract: Provided herein is an isolated fusion protein comprising a light-responsive domain and a heterologous peptide component. Exposure of the fusion protein to light induces a conformational change in the fusion protein that alters an activity of the fusion protein and the activity is a binding activity selected from an in vitro binding activity, an in vivo extracellular binding activity and an in vivo intracellular binding activity. Also provided are methods of using and identifying the fusion proteins.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Jared Toettcher, Jose Avalos, Maxwell Wilson, Alexander Goglia, Evan M. Zhao, Agnieszka Gil, Cesar Carrasco-Lopez
  • Publication number: 20190119331
    Abstract: A system and method for controlling metabolic enzymes or pathways in cells to produce a chemical above the levels of a wild-type strain is disclosed. The system utilizes cells, including yeasts, bacteria, and molds, having at least two genes capable of being controlled bi-directionally with light, where one gene is turned from off to on when exposed to light and another gene is turned from on to off when exposed to light, the two genes reversing when the light is turned off. Cells may utilize any number of sequences that benefit chemical production, including sequences that: encode for constitutive transcription of light-activated transcription factor fusions; encode for a metabolic enzyme; encode for a repressor; induce expression of metabolic enzymes; and an endogenous or exogenous activator expressed by a constitutive promoter, inducible promoter, or gene circuit.
    Type: Application
    Filed: April 7, 2017
    Publication date: April 25, 2019
    Applicant: The Trustees of Princeton University
    Inventors: Jose L. AVALOS, Jared E. TOETTCHER, Evan M. ZHAO