Patents by Inventor Evan T Jones

Evan T Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100322305
    Abstract: Image data to be compressed is first converted from the RGB domain into a gamma-powered YUV domain. A wavelet transform then separates image data into high- and low-detail sectors, incorporating a dynamic scaling method, allowing for optimal resolution. The output data from the wavelet transform is then quantized according to an entropy-prediction algorithm that tightly controls the final size of the processed image. An adaptive Golomb engine compresses the data using an adaptive form of Golomb encoding in which mean values are variable across the data. Using variable mean values reduces the deleterious effects found in conventional Golomb encoding in which localized regions of similar data are inefficiently coded if their bit values are uncommon in the data as a whole. Inverse functions are applied to uncompress the image, and a fractal dithering engine can additionally be applied to display an image on a display of lower color depth.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 23, 2010
    Applicant: APPLE INC.
    Inventors: Richard Eugene Crandall, Evan T. Jones, Jason Klivington, David A. Kramer
  • Patent number: 7751475
    Abstract: Image data to be compressed is first converted from the RGB domain into a gamma-powered YUV domain. A wavelet transform then separates image data into high- and low-detail sectors, incorporating a dynamic scaling method, allowing for optimal resolution. The output data from the wavelet transform is then quantized according to an entropy-prediction algorithm that tightly controls the final size of the processed image. An adaptive Golomb engine compresses the data using an adaptive form of Golomb encoding in which mean values are variable across the data. Using variable mean values reduces the deleterious effects found in conventional Golomb encoding in which localized regions of similar data are inefficiently coded if their bit values are uncommon in the data as a whole. Inverse functions are applied to uncompress the image, and a fractal dithering engine can additionally be applied to display an image on a display of lower color depth.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: July 6, 2010
    Assignee: Apple Inc.
    Inventors: Richard E Crandall, Evan T Jones, Jason Klivington, David Kramer
  • Patent number: 7643693
    Abstract: Lossless compression and the corresponding decompression of image and audio data are enabled using a combination of dynamic prediction and Golomb coding. First, data is converted from the RGB domain into the YUV domain. Next, a dynamic prediction algorithm is run to express pixel values as differential values rather than original bit values. Prediction coefficients are re-evaluated on the fly enabling additional compression because of more accurate predictors. An Adaptive Golomb Engine next performs an additional compression step, using an adaptive form of Golomb encoding in which mean values are variable across the data. The use of variable mean values reduces the deleterious effects found in conventional Golomb encoding in which localized regions of similar data are inefficiently coded if their bit values are uncommon in the data as a whole.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: January 5, 2010
    Assignee: Apple Inc.
    Inventors: Richard E Crandall, Evan T Jones, Jason Klivington, Mitchell Oslick
  • Patent number: 7206001
    Abstract: Rapid dithering of an RGB image from a higher order to a lower order number of bits is provided while introducing fewer undesirable artifacts than are visible in conventional dithering technology. A compact, deterministic method enables the elimination of banding, for example as is seen in 24-bit monitors when viewing color images with greater color depth. A fractal dithering engine selects a threshold matrix appropriate for an input stream, and using the threshold matrix, dithers images of the input stream to output images having a lower order number of color bits. In one embodiment, the threshold matrix is obtained by traversing 2-by-2 sub-regions of an N-by-N matrix according to a traversal pattern, and then applying a reverse binary function to the values in the original matrix to yield the threshold matrix. The threshold matrix preferably tessellates the pixel plane, subject to certain constraints.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: April 17, 2007
    Assignee: Apple Computer, Inc.
    Inventors: Richard E Crandall, Evan T Jones, Jason Klivington