Patents by Inventor Evan W. Foster

Evan W. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108181
    Abstract: An article advancing assembly and various article advancers are provided for helping dispense articles from a container. In some forms, the article advancers are provided that can bias the contents of the containers towards the dispensing opening. This can, in some forms, provide extra friction within the container and/or at the dispensing opening to decrease extra contents from being dispensed and thus decrease waste.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Inventors: Paige Wexler, Evan Oravec, Quinten Krisk, Gregory J. Foster, Robert W. Sheldon
  • Publication number: 20230030218
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Eliodor GHENCIU, Theodore E. STRAUB, Evan W. FOSTER, Michael C. PALLAS
  • Patent number: 11493526
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: November 8, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20200319221
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 8, 2020
    Inventors: Eliodor GHENCIU, Theodore E. STRAUB, Evan W. FOSTER, Michael C. PALLAS
  • Patent number: 10627420
    Abstract: A sample loader for loading a liquid sample into a plurality of reaction sites within a substrate is provided. The sample loader includes a first blade, and a second blade coupled to the first blade. The sample loader further comprises a flow path between the first blade and second blade configured to dispense a liquid sample to a substrate including a plurality of reaction sites. Further, in various embodiments the liquid sample has an advancing contact angle of 85+/?15 degrees with the first and second blade. Furthermore, loading of the liquid sample dispensed from the flow path to the plurality of reaction sites may be based on capillary action.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2020
    Assignee: Life Technologies Corporation
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Evan W. Foster
  • Patent number: 10627421
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2020
    Assignee: Life Technologies Corporation
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20150080247
    Abstract: A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Eliodor Ghenciu, Evan W. Foster, Jorge Fonseca, Kevin Maher
  • Publication number: 20150072897
    Abstract: A sample loader for loading a liquid sample into a plurality of reaction sites within a substrate is provided. The sample loader includes a first blade, and a second blade coupled to the first blade. The sample loader further comprises a flow path between the first blade and second blade configured to dispense a liquid sample to a substrate including a plurality of reaction sites. Further, in various embodiments the liquid sample has an advancing contact angle of 85+/?15 degrees with the first and second blade. Furthermore, loading of the liquid sample dispensed from the flow path to the plurality of reaction sites may be based on capillary action.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Evan W. Foster
  • Publication number: 20150051118
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 19, 2015
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20090104435
    Abstract: Disclosed is a method for the chemical modification of surfaces to form patterned nanoparticle arrays on the surfaces. Methods of producing arrays in predetermined patterns and electronic devices that incorporate such patterned arrays are also described.
    Type: Application
    Filed: May 12, 2006
    Publication date: April 23, 2009
    Applicant: STATE OF OREGON ACTING BY AND THROUGH THE STATE BO
    Inventors: James E. Hutchison, Christina E. Inman, Gregory J. Kearns, Evan W. Foster