Patents by Inventor Evangellos Vekris

Evangellos Vekris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6426280
    Abstract: A method for doping crystals is disclosed. The method includes a receiver for receiving semiconductor spheres and doping powder. The semiconductor spheres and dopant powder are then directed to a chamber defined within an enclosure. The chamber maintains a heated, inert atmosphere with which to diffuse the dopant to the semiconductor spheres.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: July 30, 2002
    Assignee: Ball Semiconductor, Inc.
    Inventors: Evangellos Vekris, Nainesh J. Patel, Murali Hanabe
  • Patent number: 6365493
    Abstract: A method for doping crystals is disclosed. The method includes a receiver for receiving semiconductor spheres and doping powder. The semiconductor spheres and dopant powder are then directed to a chamber defined within an enclosure. The chamber maintains a heated, inert atmosphere with which to diffuse the dopant to the semiconductor spheres.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: April 2, 2002
    Assignee: Ball Semiconductor, Inc.
    Inventors: Evangellos Vekris, Nainesh J. Patel, Murali Hanabe
  • Patent number: 6331477
    Abstract: A method for doping crystals is disclosed. The method includes a receiver for receiving semiconductor spheres and a dopant. The semiconductor spheres are heated to a molten state. The dopant is absorbed by the semiconductor spheres. The semiconductor spheres are cooled to produce doped semiconductor spheres. The method is performed in a non-contact environment.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: December 18, 2001
    Assignee: Ball Semiconductor, Inc.
    Inventors: Evangellos Vekris, Nainesh J. Patel, Murali Hanabe
  • Publication number: 20010041433
    Abstract: A method for doping crystals is disclosed. The method includes a receiver for receiving semiconductor spheres and doping powder. The semiconductor spheres and dopant powder are then directed to a chamber defined within an enclosure. The chamber maintains a heated, inert atmosphere with which to diffuse the dopant to the semiconductor spheres.
    Type: Application
    Filed: January 25, 2001
    Publication date: November 15, 2001
    Inventors: Evangellos Vekris, Nainesh J. Patel, Murali Hanabe
  • Patent number: 6264742
    Abstract: A system and method for processing crystals is disclosed. The system includes a receiver tube for receiving semiconductor granules. The granules are then directed to a chamber defined within an enclosure. The chamber maintains a heated, inert atmosphere with which to melt the semiconductor granules into a molten mass. A nozzle, located at one end of the chamber, creates droplets from the molten mass, which then drop through a long drop tube. As the droplets move through the drop tube, they form spherical shaped semiconductor crystals. The drop tube is heated and the spherical shaped semiconductor crystals may be single crystals. An inductively coupled plasma torch positioned between the nozzle and the drop tube melts the droplets, but leaving a seed in-situ, or the droplets may be melted and a seed injected in-situ. The seed can thereby facilitate crystallization.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: July 24, 2001
    Assignee: Ball Semiconductor Inc.
    Inventors: Evangellos Vekris, Nainesh J. Patel, Murali Hanabe
  • Patent number: 6074476
    Abstract: A system and method for forming spherical semiconductor crystals is disclosed. The system includes a receiver tube 18 for receiving semiconductor granules 104. The granules are then directed to a chamber 14 defined within an enclosure 20. The chamber maintains a heated, inert atmosphere with which to melt the semiconductor granules into a molten mass. A nozzle, 40, creates droplets from the molten mass, which then drop through a long drop tube 16. As the droplets move through the drop tube, they form spherical shaped semiconductor crystals 112. The drop tube is heated and the spherical shaped semiconductor crystals may be single crystals. An inductively coupled plasma torch positioned between the nozzle and the drop tube melts the droplets, but leaving a seed in-situ. The seed can thereby facilitate crystallization.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: June 13, 2000
    Assignee: Ball Semiconductor, Inc.
    Inventors: Murali Hanabe, Nainesh J. Patel, Evangellos Vekris