Patents by Inventor Evelyn N. Wang

Evelyn N. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851334
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 26, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 11749247
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: September 5, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Publication number: 20220307778
    Abstract: Devices and methods for fabrication of a multiscale porous high-temperature heat exchanger for high-temperature and high-pressure applications are disclosed. The heat exchanger can include a core with macrochannels formed in a checkerboard pattern to facilitate alternative flow of working fluid having hot and cold temperatures between adjacent macrochannels. Each macrochannel can include a two-dimensional microchannel array that further distributes flow throughout the heat exchanger to enhance heat transfer and mechanical strength without significant pressure drop penalty. The heat exchanger can further include a header integrated therewith to distribute working fluid flowing through the heat exchanger through the outlets such that it flows evenly therethrough. Methods of fabricating heat exchangers of this nature are also disclosed.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Evelyn N. Wang, Lin Zhao, Bikram Bhatia, Xiangyu Li, Arny Leroy, Kyle Wilke, Lenan Zhang, Jeffrey Youngblood, Rodney Trice, Chad T. Wilson, Olivia Brandt, Rodrigo Orta Guerra
  • Publication number: 20220223130
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Application
    Filed: October 21, 2021
    Publication date: July 14, 2022
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Patent number: 11241932
    Abstract: An adsorption system can be used as part of a climate control system in a vehicle or in any other space requiring heating or cooling. The adsorbent system can include an enclosure, a plurality of layers arranged in a stack inside the enclosure, and a vapor channel inside the enclosure.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: February 8, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Evelyn N Wang, Hyunho Kim, Xiansen Li, Shankar Narayan, Sameer R. Rao, Ari Samuel Umans, Sungwoo Yang
  • Patent number: 11170750
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: November 9, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Patent number: 11098261
    Abstract: Lubricant infused surfaces (LIS) can be uncoated high-surface-energy solids, thereby eliminating the need for unreliable low-surface-energy coatings and resulting in LIS repelling the lowest surface tension impinging fluid (butane, ??13 mN/m) reported to date.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: August 24, 2021
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Evelyn N. Wang, Daniel John Preston
  • Publication number: 20210123558
    Abstract: Recent progress in passive radiative cooling technologies have significantly improved cooling performance under direct sunlight. Performance of existing passive radiative coolers for air conditioning and portable refrigeration applications can be improved with a material that is solar reflective and infrared transparent that can also have a low thermal conductivity.
    Type: Application
    Filed: August 29, 2020
    Publication date: April 29, 2021
    Inventors: Arny LEROY, Bikram BHATIA, Lin ZHAO, Evelyn N. WANG
  • Publication number: 20210094834
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: November 6, 2020
    Publication date: April 1, 2021
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 10889501
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 10739089
    Abstract: Heat exchange structure. A hydrophilic, thermally conductive porous medium includes nanostructures formed substantially uniformly throughout the porous medium providing a balance of capillary and viscous forces to self-regulate a liquid-vapor contact line. A suitable porous medium is copper. A method for making the structure is also disclosed.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: August 11, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Ian Salmon McKay, Shankar Narayanan, Evelyn N. Wang
  • Publication number: 20200217587
    Abstract: Heat exchange structure. A hydrophilic, thermally conductive porous medium includes nanostructures formed substantially uniformly throughout the porous medium providing a balance of capillary and viscous forces to self-regulate a liquid-vapor contact line. A suitable porous medium is copper. A method for making the structure is also disclosed.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 9, 2020
    Inventors: Ian Salmon McKay, Shankar Narayanan, Evelyn N. Wang
  • Patent number: 10683644
    Abstract: A water-harvesting system can operate with a material that can take up and release water with minimum energy requirements and powered by low-grade energy sources, such as sunlight, in order to potentially allow its deployment into households, especially those located in sunny regions. A water-harvesting method and system can include vapor adsorption using a porous metal-organic framework. In certain embodiments, the porous metal-organic framework can include metal-organic framework in ambient air with low relative humidity, typical of the levels found in most dry regions of the world.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 16, 2020
    Assignees: Massachusetts Institute of Technology, The Regents of the University of California
    Inventors: Hyunho Kim, Sungwoo Yang, Sameer R. Rao, Shankar Narayanan, Eugene A. Kapustin, Hiroyasu Furukawa, Ari S. Umans, Omar M. Yaghi, Evelyn N. Wang
  • Patent number: 10640954
    Abstract: A water-harvesting system can operate with a material that can take up and release water with minimum energy requirements and powered by low-grade energy sources, such as sunlight, in order to potentially allow its deployment into households, especially those located in sunny regions. A water-harvesting method and system can include vapor adsorption using a porous metal-organic framework. In certain embodiments, the porous metal-organic framework can include metal-organic framework in ambient air with low relative humidity, typical of the levels found in most dry regions of the world.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 5, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Hyunho Kim, Sungwoo Yang, Shankar Narayanan, Ari Samuel Umans, Evelyn N. Wang, Sameer R. Rao
  • Publication number: 20200024539
    Abstract: Lubricant infused surfaces (LIS) can be uncoated high-surface-energy solids, thereby eliminating the need for unreliable low-surface-energy coatings and resulting in LIS repelling the lowest surface tension impinging fluid (butane, ??13 mN/m) reported to date.
    Type: Application
    Filed: November 16, 2018
    Publication date: January 23, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Evelyn N. Wang, Daniel John Preston
  • Publication number: 20190333490
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Publication number: 20190234053
    Abstract: A water-harvesting system can operate with a material that can take up and release water with minimum energy requirements and powered by low-grade energy sources, such as sunlight, in order to potentially allow its deployment into households, especially those located in sunny regions. A water-harvesting method and system can include vapor adsorption using a porous metal-organic framework. In certain embodiments, the porous metal-organic framework can include metal-organic framework in ambient air with low relative humidity, typical of the levels found in most dry regions of the world.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Applicants: The Regents of the University of California, Massachusetts Institute of Technology
    Inventors: Hyunho Kim, Sungwoo Yang, Sameer R. Rao, Shankar Narayanan, Eugene A. Kapustin, Hiroyasu Furukawa, Ari S. Umans, Omar M. Yaghi, Evelyn N. Wang
  • Publication number: 20190193512
    Abstract: An adsorption system can be used as part of a climate control system in a vehicle or in any other space requiring heating or cooling. The adsorbent system can include an enclosure, a plurality of layers arranged in a stack inside the enclosure, and a vapor channel inside the enclosure.
    Type: Application
    Filed: December 24, 2018
    Publication date: June 27, 2019
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Evelyn N Wang, Hyunho Kim, Xiansen Li, Shankar Narayanan, Sameer R. Rao, Ari Samuel Umans, Sungwoo Yang
  • Publication number: 20190170448
    Abstract: An adsorption system can be used as part of a climate control system in a vehicle or in any other space requiring heating or cooling.
    Type: Application
    Filed: November 26, 2018
    Publication date: June 6, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Young Suk Nam, Ryan Enright, Shalabh Maroo, Evelyn N. Wang, Shankar Narayanan, Ian Salmon McKay
  • Publication number: 20190100439
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: February 24, 2017
    Publication date: April 4, 2019
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis