Patents by Inventor Eyal Oz-Sinay

Eyal Oz-Sinay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230273811
    Abstract: In one embodiment, an apparatus includes: an instruction fetch circuit to fetch instructions; a decode circuit coupled to the instruction fetch circuit to decode the fetched instructions into micro-operations (pops); a scheduler coupled to the decode circuit to schedule the pops for execution; and an execution circuit coupled to the scheduler, the execution circuit comprising a plurality of execution ports to execute the pops. The scheduler may be configured to: schedule at least some pops of a first type for redundant execution on symmetric execution ports of the plurality of execution ports; and schedule pops of a second type for non-redundant execution on a single execution port of the plurality of execution ports. Other embodiments are described and claimed.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Inventors: Michael Mishaeli, Eyal Oz-Sinay, Gavri Berger, Gal Ofir, Tomer Weiner, Arkady Bramnik
  • Patent number: 11455167
    Abstract: Disclosed embodiments relate to efficient complex vector multiplication. In one example, an apparatus includes execution circuitry, responsive to an instruction having fields to specify multiplier, multiplicand, and summand complex vectors, to perform two operations: first, to generate a double-even multiplicand by duplicating even elements of the specified multiplicand, and to generate a temporary vector using a fused multiply-add (FMA) circuit having A, B, and C inputs set to the specified multiplier, the double-even multiplicand, and the specified summand, respectively, and second, to generate a double-odd multiplicand by duplicating odd elements of the specified multiplicand, to generate a swapped multiplier by swapping even and odd elements of the specified multiplier, and to generate a result using a second FMA circuit having its even product negated, and having A, B, and C inputs set to the swapped multiplier, the double-odd multiplicand, and the temporary vector, respectively.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: September 27, 2022
    Assignee: Intel Coporation
    Inventors: Raanan Sade, Thierry Pons, Amit Gradstein, Zeev Sperber, Mark J. Charney, Robert Valentine, Eyal Oz-Sinay
  • Publication number: 20200201628
    Abstract: Disclosed embodiments relate to efficient complex vector multiplication. In one example, an apparatus includes execution circuitry, responsive to an instruction having fields to specify multiplier, multiplicand, and summand complex vectors, to perform two operations: first, to generate a double-even multiplicand by duplicating even elements of the specified multiplicand, and to generate a temporary vector using a fused multiply-add (FMA) circuit having A, B, and C inputs set to the specified multiplier, the double-even multiplicand, and the specified summand, respectively, and second, to generate a double-odd multiplicand by duplicating odd elements of the specified multiplicand, to generate a swapped multiplier by swapping even and odd elements of the specified multiplier, and to generate a result using a second FMA circuit having its even product negated, and having A, B, and C inputs set to the swapped multiplier, the double-odd multiplicand, and the temporary vector, respectively.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 25, 2020
    Inventors: Raanan SADE, Thierry PONS, Amit GRADSTEIN, Zeev SPERBER, Mark J. CHARNEY, Robert VALENTINE, Eyal Oz-Sinay
  • Patent number: 10521226
    Abstract: Disclosed embodiments relate to efficient complex vector multiplication. In one example, an apparatus includes execution circuitry, responsive to an instruction having fields to specify multiplier, multiplicand, and summand complex vectors, to perform two operations: first, to generate a double-even multiplicand by duplicating even elements of the specified multiplicand, and to generate a temporary vector using a fused multiply-add (FMA) circuit having A, B, and C inputs set to the specified multiplier, the double-even multiplicand, and the specified summand, respectively, and second, to generate a double-odd multiplicand by duplicating odd elements of the specified multiplicand, to generate a swapped multiplier by swapping even and odd elements of the specified multiplier, and to generate a result using a second FMA circuit having its even product negated, and having A, B, and C inputs set to the swapped multiplier, the double-odd multiplicand, and the temporary vector, respectively.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: December 31, 2019
    Assignee: Intel Corporation
    Inventors: Raanan Sade, Thierry Pons, Amit Gradstein, Zeev Sperber, Mark J. Charney, Robert Valentine, Eyal Oz-Sinay
  • Publication number: 20190303142
    Abstract: Disclosed embodiments relate to efficient complex vector multiplication. In one example, an apparatus includes execution circuitry, responsive to an instruction having fields to specify multiplier, multiplicand, and summand complex vectors, to perform two operations: first, to generate a double-even multiplicand by duplicating even elements of the specified multiplicand, and to generate a temporary vector using a fused multiply-add (FMA) circuit having A, B, and C inputs set to the specified multiplier, the double-even multiplicand, and the specified summand, respectively, and second, to generate a double-odd multiplicand by duplicating odd elements of the specified multiplicand, to generate a swapped multiplier by swapping even and odd elements of the specified multiplier, and to generate a result using a second FMA circuit having its even product negated, and having A, B, and C inputs set to the swapped multiplier, the double-odd multiplicand, and the temporary vector, respectively.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Inventors: Raanan SADE, Thierry PONS, Amit GRADSTEIN, Zeev SPERBER, Mark J. CHARNEY, Robert VALENTINE, Eyal Oz-Sinay