Patents by Inventor F. Avraham Dilmanian

F. Avraham Dilmanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190022423
    Abstract: A method for delivering therapeutic radiation to a target includes positioning a multi-aperture collimator on the skin within a trajectory of orthovoltage x-rays directed at the target, thus generating an array of minibeams, each of width between 0.1 mm to 0.6 mm. The skin is irradiated with the array. An effective beam of therapeutic radiation, which may be a solid beam, is delivered to the target at a predetermined tissue depth by merging adjacent orthovoltage x-ray minibeams sufficiently to form the effective beam. The effective beam may be formed proximal to the target. The depth at which the effective, preferably, solid, beam is formed is controlled by varying one or more of the spacing of the minibeams in the array, the minibeam width, the distance from the x-ray source to the collimator, and the x-ray source spot size. Planar minibeams can be arc-scanned while continuously modulating beam shape and intensity.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: F. Avraham Dilmanian, Sunil Krishnan, John Gordon Eley
  • Patent number: 10124194
    Abstract: A method for delivering therapeutic radiation to a target includes positioning a multi-aperture collimator on the skin within a trajectory of orthovoltage x-rays directed at the target, thus generating an array of minibeams, each of width between 0.1 mm to 0.6 mm. The skin is irradiated with the array. An effective beam of therapeutic radiation, which may be a solid beam, is delivered to the target at a predetermined tissue depth by merging adjacent orthovoltage x-ray minibeams sufficiently to form the effective beam. The effective beam may be formed proximal to the target. The depth at which the effective, preferably, solid, beam is formed is controlled by varying one or more of the spacing of the minibeams in the array, the minibeam width, the distance from the x-ray source to the collimator, and the x-ray source spot size. Planar minibeams can be arc-scanned while continuously modulating beam shape and intensity.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: November 13, 2018
    Assignees: The Research Foundation for State University of New York, The Board of Regents, The University of Texas System
    Inventors: F. Avraham Dilmanian, Sunil Krishnan, John Gordon Eley
  • Patent number: 10021087
    Abstract: A system and method for communicating secure, privatized data stored on a first user device with a second user device requesting access thereto includes initiating a timed access gate for receiving verification of authenticating credentials from the second user device, after the first user credentials associated with the first user device are verified. If the second user device is verified within the predetermined period of time, an authentication handshake between the first user device and the second user device is completed. On completion of the handshake, a communication channel is opened for transmitting the first user's privatized data between the first user device and the second user device.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: July 10, 2018
    Inventors: Mansour Aaron Karimzadeh, F. Avraham Dilmanian, Farshad Namdar
  • Patent number: 9962556
    Abstract: A method for delivering therapeutic light ion radiation to a target volume of a subject, wherein the target volume is located at a predetermined depth from the skin, includes irradiating a surface of the skin with an array of light ion minibeams comprising parallel, spatially distinct minibeams at the surface in an amount and spatially arranged and sized to maintain a tissue-sparing effect from the skin to a proximal side of the target volume, and to merge into a solid beam at a proximal side of the target volume. A gap between the parallel, spatially distinct minibeams at the surface and a species of light ions forming the minibeams are selected such that the array merges into a solid beam at a predetermined beam energy, and across all energies for Bragg-peak spreading, at a proximal side of the target volume.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 8, 2018
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: F. Avraham Dilmanian, Sunil Krishnan, John Eley
  • Publication number: 20170128739
    Abstract: A method for delivering therapeutic light ion radiation to a target volume of a subject, wherein the target volume is located at a predetermined depth from the skin, includes irradiating a surface of the skin with an array of light ion minibeams comprising parallel, spatially distinct minibeams at the surface in an amount and spatially arranged and sized to maintain a tissue-sparing effect from the skin to a proximal side of the target volume, and to merge into a solid beam at a proximal side of the target volume. A gap between the parallel, spatially distinct minibeams at the surface and a species of light ions forming the minibeams are selected such that the array merges into a solid beam at a predetermined beam energy, and across all energies for Bragg-peak spreading, at a proximal side of the target volume.
    Type: Application
    Filed: June 24, 2015
    Publication date: May 11, 2017
    Inventors: F. Avraham DILMANIAN, Sunil KRISHNAN, John ELEY
  • Publication number: 20170036043
    Abstract: A method for delivering therapeutic radiation to a target includes positioning a multi-aperture collimator on the skin within a trajectory of orthovoltage x-rays directed at the target, thus generating an array of minibeams, each of width between 0.1 mm to 0.6 mm. The skin is irradiated with the array. An effective beam of therapeutic radiation, which may be a solid beam, is delivered to the target at a predetermined tissue depth by merging adjacent orthovoltage x-ray minibeams sufficiently to form the effective beam. The effective beam may be formed proximal to the target. The depth at which the effective, preferably, solid, beam is formed is controlled by varying one or more of the spacing of the minibeams in the array, the minibeam width, the distance from the x-ray source to the collimator, and the x-ray source spot size. Planar minibeams can be arc-scanned while continuously modulating beam shape and intensity.
    Type: Application
    Filed: June 21, 2016
    Publication date: February 9, 2017
    Inventors: F. Avraham Dilmanian, Sunil Krishnan, John Gordon Eley
  • Publication number: 20160080364
    Abstract: A system and method for communicating secure, privatized data stored on a first user device with a second user device requesting access thereto includes initiating a timed access gate for receiving verification of authenticating credentials from the second user device, after the first user credentials associated with the first user device are verified. If the second user device is verified within the predetermined period of time, an authentication handshake between the first user device and the second user device is completed. On completion of the handshake, a communication channel is opened for transmitting the first user's privatized data between the first user device and the second user device.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 17, 2016
    Inventors: Mansour Aaron Karimzadeh, F. Avraham Dilmanian, Farshad Namdar
  • Patent number: 8269198
    Abstract: A method for delivering therapeutic heavy ion radiation to a subject, wherein a therapeutic dose of heavy ions is delivered substantially only to a target volume within the subject by generating a broad field of radiation effect substantially only within the target volume, and wherein the broad field of radiation effect is not generated in non-targeted tissue. The method includes the step of irradiating the target volume with at least two arrays of heavy ion microbeams, wherein the at least two arrays each have at least two parallel, spatially distinct heavy ion microbeams. The two arrays of microbeams are interleaved substantially only within the target volume to form a substantially continuous broad beam of radiation substantially only within the target volume.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: September 18, 2012
    Inventors: F. Avraham Dilmanian, Allen G. Meek
  • Publication number: 20100187446
    Abstract: A method for delivering therapeutic heavy ion radiation to a subject, wherein a therapeutic dose of heavy ions is delivered substantially only to a target volume within the subject by generating a broad field of radiation effect substantially only within the target volume, and wherein the broad field of radiation effect is not generated in non-targeted tissue. The method includes the step of irradiating the target volume with at least two arrays of heavy ion microbeams, wherein the at least two arrays each have at least two parallel, spatially distinct heavy ion microbeams. The two arrays of microbeams are interleaved substantially only within the target volume to form a substantially continuous broad beam of radiation substantially only within the target volume.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 29, 2010
    Inventors: F. Avraham Dilmanian, Allen G. Meek
  • Patent number: 7746979
    Abstract: A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: June 29, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: F. Avraham Dilmanian, David J. Anchel, Glenn Gaudette, Pantaleo Romanelli, James Hainfeld
  • Patent number: 7661146
    Abstract: A system and method for providing, managing, and accessing a multi-user secure portable database using secure memory cards is provided. The database has a secure portion for storing security keys and a non-secure portion for encrypted data files. Access to the encrypted data files is controlled by assigning access rights through an access control matrix to each encrypted data file according to a hierarchical structure of users. A user requesting access is identified in the hierarchy, associated with a key for allowing the requested access, and the requested access allowed to a file in accordance with the rights allocated through the access control matrix. A patient can selectively grant access to encrypted medical records on his card to a physician. Authentication of the owner/patient is preferably required. Other records required by emergency medical personnel are readable from the same card without requiring permission from the patient.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: February 9, 2010
    Assignee: PrivaMed, Inc.
    Inventors: Mansour Aaron Karimzadeh, Mark Douglas Schaeffer, F. Avraham Dilmanian, Farshad Namdar
  • Patent number: 7643610
    Abstract: A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 5, 2010
    Assignee: Brookhaven Science Associates, LLC
    Inventor: F. Avraham Dilmanian
  • Publication number: 20090093863
    Abstract: A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Applicant: Brookhaven Science Associates, LLC
    Inventor: F. Avraham Dilmanian
  • Publication number: 20080292052
    Abstract: A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.
    Type: Application
    Filed: February 10, 2006
    Publication date: November 27, 2008
    Inventors: F. Avraham Dilmanian, David J. Anchel, Glenn Gaudette, Pantaleo Romanelli, James Hainfeld
  • Publication number: 20080192892
    Abstract: A method of performing microbeam radiation therapy (MRT) includes delivering a dose only to selected tissue in a target volume (10) with continuous broad beam, first, by interleaving arrays of microplanar beams (30,36) only at the target (10). Administered contrast agents can supplement the effect by preferentially increasing the target dose relative to dose in normal tissue. A broad beam effect is alternatively created using non-interleaving microbeam array(s) with scattering agents administered to selected tissue that preferentially increase valley dose (69) within target to approximate broad beam. The methods of interleaving microbeams are also applied to treat diseases and conditions by ablating at least a portion of selected tissue, or by damaging blood-brain barrier for efficient drug and/or cell administration.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 14, 2008
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES
    Inventors: F. Avraham Dilmanian, Gerard M. Morris, James Hainfeld
  • Patent number: 7305064
    Abstract: A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: December 4, 2007
    Assignee: Brookhaven Science Associates, LLC
    Inventors: F. Avraham Dilmanian, John W. McDonald, III
  • Patent number: 7194063
    Abstract: A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: March 20, 2007
    Assignee: Brookhaven Science Associates, LLC
    Inventors: F. Avraham Dilmanian, Gerard M. Morris, James F. Hainfeld
  • Patent number: 7158607
    Abstract: A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: January 2, 2007
    Assignee: Brookhaven Science Associates, LLC
    Inventors: F. Avraham Dilmanian, John W. McDonald, III
  • Patent number: 5818050
    Abstract: A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: October 6, 1998
    Assignee: Brookhaven Science Associates LLC
    Inventors: F. Avraham Dilmanian, Randall L. Barbour
  • Patent number: 5583343
    Abstract: A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.
    Type: Grant
    Filed: July 25, 1995
    Date of Patent: December 10, 1996
    Assignee: Associated Universities, Inc.
    Inventors: F. Avraham Dilmanian, Samuel Packer, Daniel N. Slatkin