Patents by Inventor F. Herrington

F. Herrington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240054502
    Abstract: The present disclosure is directed to an authentication system, tools, and methods for authentication including a first inspection tool that generates first images for a first inspection of a device, and a first processor for processing the first images using a hashing algorithm, for which the first inspection tool and the first processor are sited at a first location, and a second inspection tool that generates second images for a second inspection of the device, and a second processor for processing the second images using the hashing algorithm, for which the second inspection tool and the second processor are sited at a second location. The second processor compares the first and second sets of hash values to authenticate the device as being authentic and untampered.
    Type: Application
    Filed: August 9, 2022
    Publication date: February 15, 2024
    Inventors: Michael A. SCHROEDER, Sean BUSHELL, William F. HERRINGTON, Hannah ROWE, Sarah SHAHRAINI, Ryan PATE, Erasenthiran POONJOLAI, Saikumar JAYARAMAN, Fariaz KARIM
  • Patent number: 11307092
    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: April 19, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Amir H. Atabaki, Rajeev J. Ram, William F. Herrington
  • Publication number: 20210116298
    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.
    Type: Application
    Filed: April 21, 2020
    Publication date: April 22, 2021
    Inventors: Amir H. Atabaki, Rajeev J. RAM, William F. Herrington
  • Patent number: 10732044
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 4, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Erika Ye, Amir H. Atabaki, Ningren Han, Rajeev J. Ram, William F. Herrington
  • Patent number: 10656012
    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Amir H. Atabaki, Rajeev J. Ram, William F. Herrington
  • Publication number: 20200103281
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 2, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Erika Ye, Amir H. Atabaki, Ningren Han, Rajeev J. RAM, William F. Herrington
  • Patent number: 10533895
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 14, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Erika Ye, Amir H. Atabaki, Ningren Han, Rajeev J. Ram, William F. Herrington
  • Publication number: 20190323892
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Application
    Filed: January 10, 2019
    Publication date: October 24, 2019
    Inventors: Erika Ye, Amir H. Atabaki, Ningren Han, Rajeev J. Ram, William F. Herrington
  • Publication number: 20190195688
    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Inventors: Amir H. Atabaki, Rajeev J. RAM, William F. Herrington
  • Patent number: 10215639
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 26, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Erika Ye, Amir H. Atabaki, Ningren Han, Rajeev Jagga Ram, William F. Herrington
  • Publication number: 20170059412
    Abstract: A non-paraxial Talbot spectrometer includes a transmission grating to receive incident light. The grating period of the transmission grating is comparable to the wavelength of interest so as to allow the Talbot spectrometer to operate outside the paraxial limit. Light transmitted through the transmission grating forms periodic Talbot images. A tilted detector is employed to simultaneously sample the Talbot images at various distances along a direction perpendicular to the grating. Spectral information of the incident light can be calculated by taking Fourier transform of the measured Talbot images or by comparing the measured Talbot images with a library of intensity patterns acquired with light sources having known wavelengths.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 2, 2017
    Inventors: Erika YE, Amir H. Atabaki, Ningren Han, Rajeev Jagga Ram, William F. Herrington
  • Publication number: 20070034274
    Abstract: An apparatus for simultaneously pulling and twisting a cylindrical extrudate as a whole into a helical configuration, that is, a cylindrical configuration that, as a whole, has longitudinal and circumferential vector components. The apparatus is adapted to act on a solidified extrudate by causing it to be pulled downstream in the direction of its longitudinal axis while simultaneously being rotated about its axis. A circumferential twisting and a downstream pulling are simultaneously applied to a cooled and solidified extrudate. This is accomplished with a single piece of apparatus as shown. Thus, by twisting the solidified extrudate downstream both a circumferential and an axial component are imparted to the solidified extrudate. This, in turn, imparts a longitudinal and a circumferential movement to the molten extrudate as it emerges from an extruder die before it is fully solidified. The thus twisted molten extrudate is the cooled and solidified in its twisted condition.
    Type: Application
    Filed: October 25, 2006
    Publication date: February 15, 2007
    Inventor: F. Herrington
  • Publication number: 20050233019
    Abstract: This specification describes an apparatus for carrying out a method of making a multi-walled pipe in the shape of a tube having a helical configuration. The apparatus is made up of an extruder with multiple dies. These multiple dies include at least two concentric arcuate dies that are radially spaced apart and a plurality of relatively straight dies that radially connect the concentric arcuate dies. The apparatus includes means for cooling the extrudate to solidify it into a usable condition. Means are provided to cause the multi-wall pipe to have a helical configuration, that is, apparatus is provided that arranges the pipe as a whole into a structure that has a circumferential component and a longitudinal component to its orientation; e.g. a helix. The longitudinal orientation is accomplished by providing apparatus that causes the pipe to proceed downstream in the direction of its longitudinal axis. In one embodiment of this invention, the extrudate is pulled longitudinally down stream.
    Type: Application
    Filed: June 17, 2005
    Publication date: October 20, 2005
    Inventor: F. Herrington
  • Publication number: 20050108861
    Abstract: A method for providing an end-stop for a slider on a resealable thermoplastic bag is provided. The resealable thermoplastic bag includes a profile track having a first side panel and a second side panel. A clip having first and second legs is made to straddle the profile track such that the first leg of the clip being proximate to the first side panel and the second leg of the clip being proximate to the second side panel. One of the legs has an inward-facing protrusion for engaging a corresponding recess on the panel proximate thereto, such that the clip resists vertical motion on the profile track. The other of the legs of the clip is sealed to the panel proximate thereto.
    Type: Application
    Filed: October 20, 2004
    Publication date: May 26, 2005
    Applicant: Webster Industries Division Chelsea Industries, Inc.
    Inventors: F. Herrington, Bryon Hollenbeck