Patents by Inventor Fa Dai

Fa Dai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240260072
    Abstract: Code-domain spread spectrum (CDSS) correlation embodiments for wireless and radar transceivers with the dual purposes of in-band jammer rejection and transmitter-to-receiver self-interference suppression. The encode/decode schemes may be employed at different locations on the TRx paths such as TRx front-end and/or in the baseband, for different TR transceiver architectures such as I/Q TRx, MIMO/phase array TRx and polar TRx. The encoder may be placed in the baseband digital unit and the decoder may be placed in front-of-the LNA in the RF domain for easy encoder implementation in the digital domain while protecting the receiver path from interferences. Group delay filters and/or tunable time delays can be employed to compensate for a signal path delay in a radar TRx. Signals coded with a correlated code sequence and synchronized with the encoder in the transmitter may be decoded and restored at the receiver while the in-band jammers and self-interference can be suppressed.
    Type: Application
    Filed: January 26, 2023
    Publication date: August 1, 2024
    Inventors: Fa Dai, John David Irwin
  • Publication number: 20240260074
    Abstract: Code-domain spread spectrum (CDSS) correlation embodiments for wireless and radar transceivers with the dual purposes of in-band jammer rejection and transmitter-to-receiver self-interference suppression. The encode/decode schemes may be employed at different locations on the TRx paths such as TRx front-end and/or in the baseband, for different TR transceiver architectures such as I/Q TRx, MIMO/phase array TRx and polar TRx. The encoder may be placed in the baseband digital unit and the decoder may be placed in front-of-the LNA in the RF domain for easy encoder implementation in the digital domain while protecting the receiver path from interferences. Group delay filters and/or tunable time delays can be employed to compensate for a signal path delay in a radar TRx. Signals coded with a correlated code sequence and synchronized with the encoder in the transmitter may be decoded and restored at the receiver while the in-band jammers and self-interference can be suppressed.
    Type: Application
    Filed: August 4, 2023
    Publication date: August 1, 2024
    Inventors: Fa Dai, John David Irwin
  • Patent number: 12040811
    Abstract: An analog-to-digital converter includes a first converter stage comprising a successive-approximation-register (SAR) analog-to-digital converter (ADC), the SAR ADC being configured for voltage domain quantization, a second converter stage coupled to the first converter stage to quantize residual voltages of the voltage domain quantization, the second converter stage including a ring time-to-digital converter (TDC), and a third converter stage comprising an interpolation TDC, the interpolation TDC being coupled to the second converter stage to provide further time domain quantization.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: July 16, 2024
    Assignee: Digital Analog Integration, Inc.
    Inventors: Haoyi Zhao, Fa Dai, John David Irwin
  • Publication number: 20230387934
    Abstract: An analog-to-digital converter includes a first converter stage comprising a successive-approximation-register (SAR) analog-to-digital converter (ADC), the SAR ADC being configured for voltage domain quantization, a second converter stage coupled to the first converter stage to quantize residual voltages of the voltage domain quantization, the second converter stage including a ring time-to-digital converter (TDC), and a third converter stage comprising an interpolation TDC, the interpolation TDC being coupled to the second converter stage to provide further time domain quantization.
    Type: Application
    Filed: May 24, 2022
    Publication date: November 30, 2023
    Inventors: Haoyi Zhao, Fa Dai, John David Irwin
  • Patent number: 11784653
    Abstract: An analog-to-digital converter includes a first converter stage, a second converter stage coupled to the first converter stage to quantize a residue signal of the first converter stage, and an inter-stage converter disposed between the first and second converter stages. The inter-stage converter is configured to convert between a first domain and a second domain. The inter-stage converter is configured to process the residue signal of the first converter stage such that a range of the residue signal matches a full scale of the second converter stage.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: October 10, 2023
    Assignee: Digital Analog Integration, Inc.
    Inventors: Haoyi Zhao, Fa Dai, John David Irwin
  • Publication number: 20220255553
    Abstract: An analog-to-digital converter includes a first converter stage, a second converter stage coupled to the first converter stage to quantize a residue signal of the first converter stage, and an inter-stage converter disposed between the first and second converter stages. The inter-stage converter is configured to convert between a first domain and a second domain. The inter-stage converter is configured to process the residue signal of the first converter stage such that a range of the residue signal matches a full scale of the second converter stage.
    Type: Application
    Filed: October 28, 2021
    Publication date: August 11, 2022
    Inventors: Haoyi Zhao, Fa Dai, John David Irwin
  • Patent number: 11239853
    Abstract: An analog-to-digital converter includes a first converter stage, a second converter stage coupled to the first converter stage to quantize a residue signal of the first converter stage, and an inter-stage converter disposed between the first and second converter stages. The inter-stage converter is configured to convert between a first domain and a second domain. The inter-stage converter is configured to process the residue signal of the first converter stage such that a range of the residue signal matches a full scale of the second converter stage.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: February 1, 2022
    Assignee: Digital Analog Integration, Inc.
    Inventors: Fa Dai, Haoyi Zhao, John David Irwin
  • Patent number: 11206163
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 21, 2021
    Assignee: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Publication number: 20210250213
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Application
    Filed: March 18, 2021
    Publication date: August 12, 2021
    Applicant: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Patent number: 10958491
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: March 23, 2021
    Assignee: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Publication number: 20200374165
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 26, 2020
    Applicant: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Patent number: 10785075
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 22, 2020
    Assignee: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Patent number: 10396807
    Abstract: The disclosure of the present application presents a multiple-ring coupled ring oscillator design that employs multiple-ring coupling to achieve improved phase noise by minimizing noise injection from tail current and adjacent rings, while providing additional output phases for multiphase signal generation. In one non-limiting exemplary prototype embodiment, a 1.5 GHz triple-ring coupled ring oscillator achieved measured phase noise of ?110.5 dBc/Hz at 1 MHz offset, demonstrating phase noise reduction of 7 dB compared with its single-ring oscillator counterpart. The MROs couple multiple rings with proper phase shifting to achieve improved phase noise. Common source coupling benefits from tail current noise reduction, and introducing phase delays in the coupling paths minimizes noise coupling from the adjacent cores. The overall effect leads to improved phase noise performance as demonstrated in quadrature voltage controlled VCO designs.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: August 27, 2019
    Assignee: Auburn University
    Inventors: Fa Dai, Ruixin Wang
  • Publication number: 20190149376
    Abstract: The present disclosure includes a time-to-digital converter (TDC) based RF-to-digital (RDC) data converter for time domain signal processing polar receivers. Polar data conversion achieves better SNR tolerance owing to its phase convergence near the origin in a polar coordinate. The proposed RDC consists of a TDC for phase detection and an analog-to-digital converter (ADC) for amplitude conversion. Unlike the conversional data converter, the proposed ADC's sampling position is guided by the detected phase result from the TDC's output. This TDC assisted data-converter architecture reduces the number of bits required for the ADC. In addition, oversampling is no longer needed. With precisely controlled tunable delay cells and gain compensator, this hybrid data convertor is capable to directly convert Quadrature Amplitude Modulation (QAM) waveforms and Amplitude Phase Shift Keying (APSK) waveforms directly from the RF signal without down-conversion.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Applicant: Auburn University
    Inventors: Fa Dai, Hechen Wang
  • Patent number: 10128890
    Abstract: Some embodiments include a privacy/security apparatus for a portable communication device that includes a housing assembly configured to at least partially attenuate at least one of sound energy, acoustic energy, and electromagnetic energy including light, optical, and IR energy and RF radiation from passing through the housing assembly. The housing assembly includes a Faraday cage with two or more portions, and at least one protective shell coupled to or forming at least one aperture. The at least one aperture is configured and arranged to at least partially enclose the portable communication device so that at least a portion of the portable communication device is positioned within at least one portion of the Faraday cage, and the at least one seal coupled or integrated with the protective shell. The housing assembly can be an articulating assembly, a sliding assembly, and can include an active acoustic jamming or passive acoustic attenuation element.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: November 13, 2018
    Inventors: Teddy David Thomas, Harald Quintus-Bosz, Manas Chandran Menon, Anthony Clegg Parker, Klaus Heribert Renner, Julien Prosper Marc Aknin, Christopher O. Evans, Bing Xu, Huyen NguyenNgoc Cam Le, Fa Dai, John Stadille, Michael Fong, John Kinnard, Craig Ovans, Andres Parada, John Deros, Andrew Goodfellow, Justin David Cumming, Gregg Robert Draudt, Eric Smallwood, Piotr Diduch, Christopher R. McCaslin, Elias R. Samia, Evan Hutker, Robert Francis Hartmann, Stuart Eric Schechter
  • Patent number: 9985638
    Abstract: A digitally controlled oscillator (DCO) modulation apparatus and method provides a wideband phase-modulated signal output. An exemplary modulator circuit uses an oscillator in a phase-locked loop. The circuit receives a wrapped-phase input signal, unwraps the wrapped-phase input signal to generate an unwrapped-phase signal, and differentiates the unwrapped-phase signal. The wrapped-phase input signal and the differentiated unwrapped-phase signal are both injected into a feedback loop of the modulator circuit. The feedback loop may include a multi-modulus frequency divider with a frequency divisor that is temporarily incremented or decremented to cancel out abrupt phase jumps associated with the wrapped-phase to unwrapped-phase conversion.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: May 29, 2018
    Assignee: Innophase INC.
    Inventors: Yang Xu, Fa Dai, Dongyi Liao
  • Patent number: 9979427
    Abstract: Some embodiments include a privacy/security apparatus for a portable communication device that includes a housing assembly configured to at least partially attenuate at least one of sound energy, acoustic energy, and electromagnetic energy including light, optical, and IR energy and RF radiation from passing through the housing assembly. The housing assembly includes a Faraday cage with two or more portions, and at least one protective shell coupled to or forming at least one aperture. The at least one aperture is configured and arranged to at least partially enclose the portable communication device so that at least a portion of the portable communication device is positioned within at least one portion of the Faraday cage, and the at least one seal coupled or integrated with the protective shell. The housing assembly can be an articulating assembly, a sliding assembly, and can include an active acoustic jamming or passive acoustic attenuation element.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: May 22, 2018
    Inventors: Teddy David Thomas, Harald Quintus-Bosz, Manas Chandran Menon, Anthony Clegg Parker, Klaus Heribert Renner, Julien Prosper Marc Aknin, Christopher O. Evans, Bing Xu, Huyen NguyenNgoc Cam Le, Fa Dai, John Stadille, Michael Fong, John Kinnard, Craig Ovans, Andres Parada, John Deros, Andrew Goodfellow, Justin David Cumming, Gregg Robert Draudt, Eric Smallwood, Piotr Diduch, Christopher R. McCaslin, Elias R. Samia, Evan Hutker, Robert Francis Hartmann, Stuart Eric Schechter
  • Publication number: 20170194975
    Abstract: A digitally controlled oscillator (DCO) modulation apparatus and method provides a wideband phase-modulated signal output. An exemplary modulator circuit uses an oscillator in a phase-locked loop. The circuit receives a wrapped-phase input signal, unwraps the wrapped-phase input signal to generate an unwrapped-phase signal, and differentiates the unwrapped-phase signal. The wrapped-phase input signal and the differentiated unwrapped-phase signal are both injected into a feedback loop of the modulator circuit. The feedback loop may include a multi-modulus frequency divider with a frequency divisor that is temporarily incremented or decremented to cancel out abrupt phase jumps associated with the wrapped-phase to unwrapped-phase conversion.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 6, 2017
    Inventors: Yang Xu, Fa Dai, Dongyi Liao
  • Patent number: 9608648
    Abstract: A digitally controlled oscillator (DCO) modulation apparatus and method provides a wideband phase-modulated signal output. An exemplary modulator circuit uses an oscillator in a phase-locked loop. The circuit receives a wrapped-phase input signal, unwraps the wrapped-phase input signal to generate an unwrapped-phase signal, and differentiates the unwrapped-phase signal. The wrapped-phase input signal and the differentiated unwrapped-phase signal are both injected into a feedback loop of the modulator circuit. The feedback loop may include a multi-modulus frequency divider with a frequency divisor that is temporarily incremented or decremented to cancel out abrupt phase jumps associated with the wrapped-phase to unwrapped-phase conversion.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: March 28, 2017
    Assignee: INNOPHASE, INC.
    Inventors: Yang Xu, Fa Dai, Dongyi Liao
  • Publication number: 20160322980
    Abstract: A digitally controlled oscillator (DCO) modulation apparatus and method provides a wideband phase-modulated signal output. An exemplary modulator circuit uses an oscillator in a phase-locked loop. The circuit receives a wrapped-phase input signal, unwraps the wrapped-phase input signal to generate an unwrapped-phase signal, and differentiates the unwrapped-phase signal. The wrapped-phase input signal and the differentiated unwrapped-phase signal are both injected into a feedback loop of the modulator circuit. The feedback loop may include a multi-modulus frequency divider with a frequency divisor that is temporarily incremented or decremented to cancel out abrupt phase jumps associated with the wrapped-phase to unwrapped-phase conversion.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Yang Xu, Fa Dai, Dongyi Liao