Patents by Inventor Fabian Stutzki

Fabian Stutzki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230335964
    Abstract: The invention relates to an optical system comprising: a laser source which generates pulsed laser radiation consisting of a temporal sequence of laser pulses; and at least one pulse compression device which is located in the beam path and has a non-linear medium, wherein the laser pulses undergo non-linear spectral broadening during propagation through the medium, and a chirp is applied to the laser pulses. The aim of the invention is to provide an optical system which makes it possible to generate non-linearly compressed laser pulses with improved temporal pulse contrast or with improved pulse quality. According to the disclosed approach, a group delay dispersion which varies along the beam path and which compensates at least partially for the chirp is applied to the laser pulses by the pulse compression device.
    Type: Application
    Filed: August 5, 2021
    Publication date: October 19, 2023
    Applicant: Active Fiber Systems GmbH
    Inventors: Tino EIDAM, Christian GAIDA, Steffen HÄDRICH, Fabian STUTZKI
  • Publication number: 20230275385
    Abstract: The disclosure relates to an optical system comprising a laser source (1) which generates pulsed laser radiation consisting of a temporal sequence of laser pulses in an input laser beam (EL), a splitting element (2) which follows the laser source (1) in the course of the beam and splits each of the laser pulses into laser pulse replicas separated spatially and/or temporally from one another, a combination element (4) which follows the splitting element (2) in the course of the beam and superimposes the laser pulse replicas in a respective laser pulse in an output laser beam. It is the task of the disclosure to provide an improved optical system compared to the prior art. It should be possible to generate particularly short and thus spectrally broadband laser pulses of high power with the optical system.
    Type: Application
    Filed: June 14, 2021
    Publication date: August 31, 2023
    Applicant: Active Fiber Systems GmbH
    Inventors: Tino EIDAM, Steffen HÄDRICH, Fabian STUTZKI
  • Patent number: 10490969
    Abstract: A method of propagating a laser signal through an optical waveguide and a waveguide laser system provide a novel way of stabilizing the beam emitted by a fiber laser system above the mode instability threshold wherein the beat length of two or more interfering transverse modes of the laser signal in the optical waveguide is modulated in time.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: November 26, 2019
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christoph Stihler, César Jáuregui Misas, Jens Limpert, Hans-Juergen Otto, Andreas Tuennermann, Fabian Stutzki
  • Publication number: 20190018253
    Abstract: An optical arrangement and a method for producing a combined beam of a plurality of laser light sources are described. In an embodiment, an optical arrangement includes a linear arrangement of a plurality of laser light sources aligned in parallel and having wavelengths different from each other, wherein the laser light sources are disposed in a plurality of groups, a collimation lens for producing a partial beam bundle for each group of laser light sources and a first diffraction grating onto which the partial beam bundles of the groups of laser light sources impinge adjacent to one another, following the collimation lenses, wherein the first diffraction grating is configured to deflect the partial beam bundles onto a second diffraction grating, and wherein the second diffraction grating is configured to deflect the partial beam bundles such that the bundles are combined into an overall beam bundle.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Thomas Schreiber, Fabian Stutzki
  • Publication number: 20180019566
    Abstract: A method of propagating a laser signal through an optical waveguide and a waveguide laser system provide a novel way of stabilizing the beam emitted by a fiber laser system above the mode instability threshold wherein the beat length of two or more interfering transverse modes of the laser signal in the optical waveguide is modulated in time.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 18, 2018
    Applicants: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christoph STIHLER, César JÁUREGUI MISAS, Jens LIMPERT, Hans-Juergen OTTO, Andreas TUENNERMANN, Fabian STUTZKI
  • Patent number: 9235106
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 12, 2016
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 9065245
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 23, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Publication number: 20150063767
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 5, 2015
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 8891917
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann
  • Publication number: 20140010246
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Application
    Filed: November 22, 2011
    Publication date: January 9, 2014
    Applicants: Friedrich-Schiller-Universitaet Jena, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Publication number: 20120237162
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Application
    Filed: September 15, 2010
    Publication date: September 20, 2012
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN, FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann