Patents by Inventor Fabian Wenzel
Fabian Wenzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200279371Abstract: The present disclosure relates to a method for medical imaging method for locating anatomical landmarks of a predetermining defined anatomy.Type: ApplicationFiled: November 17, 2017Publication date: September 3, 2020Inventors: FABIAN WENZEL, TOM BROSCH
-
Patent number: 10629002Abstract: An image processing system 100 for enabling a user to navigate through image data having at least three spatial dimensions by displaying views 155 of the image data, the image processing system comprising an image device 110 comprising a display 130 for displaying the views of the image data and an orientation sensor 120 for measuring an orientation of the image device with respect to a reference orientation for providing rotation data 125 indicative of a device rotation of the image device, means 140 for establishing a center of rotation in the image data, and an image processor 150 for establishing the views of the image data in relation to the device rotation by, for establishing a current view, (i) receiving the rotation data from the orientation sensor, (ii) establishing a view rotation in relation to the device rotation, and (iii) establishing the current view in dependence on the view rotation around the center of rotation with respect to a reference view.Type: GrantFiled: August 2, 2019Date of Patent: April 21, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Fabian Wenzel, Roel Truyen, Jean-Pierre Franciscus Alexander Maria Ermes, Johan Michiel den Harder
-
Patent number: 10586398Abstract: The present invention relates to medical image editing. In order to facilitate the medical image editing process, a medical image editing device (50) is provided that comprises a processor unit (52), an output unit (54), and an interface unit (56). The processor unit (52) is configured to provide a 3D surface model of an anatomical structure of an object of interest. The 3D surface model comprises a plurality of surface sub-portions. The surface sub-portions each comprise a number of vertices, and each vertex is assigned by a ranking value. The processor unit (52) is further configured to identify at least one vertex of vertices adjacent to the determined point of interest as an intended vertex. The identification is based on a function of a detected proximity distance to the point of interest and the assigned ranking value. The output unit (54) is configured to provide a visual presentation of the 3D surface model.Type: GrantFiled: December 7, 2015Date of Patent: March 10, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Fabian Wenzel, Thomas Heiko Stehle, Carsten Meyer, Lyubomir Georgiev Zagorchev, Jochen Peters, Martin Bergtholdt
-
Publication number: 20200043616Abstract: A system includes an analytics unit (140), which compares a medical image (105) and associated information with a stored medical guideline (142), and identifies an error or a deviation (340) from the medical guideline based on the comparison.Type: ApplicationFiled: December 6, 2017Publication date: February 6, 2020Inventors: AXEL SAALBACH, TIM PHILIPP HARDER, TANJA NORDHOFF, RAFAEL WIEMKER, FABIAN WENZEL, JENS VON BERG, IRINA WAECHTER-STEHLE
-
Publication number: 20190371063Abstract: An image processing system 100 for enabling a user to navigate through image data having at least three spatial dimensions by displaying views 155 of the image data, the image processing system comprising an image device 110 comprising a display 130 for displaying the views of the image data and an orientation sensor 120 for measuring an orientation of the image device with respect to a reference orientation for providing rotation data 125 indicative of a device rotation of the image device, means 140 for establishing a center of rotation in the image data, and an image processor 150 for establishing the views of the image data in relation to the device rotation by, for establishing a current view, (i) receiving the rotation data from the orientation sensor, (ii) establishing a view rotation in relation to the device rotation, and (iii) establishing the current view in dependence on the view rotation around the center of rotation with respect to a reference view.Type: ApplicationFiled: August 2, 2019Publication date: December 5, 2019Inventors: Fabian Wenzel, Roel Truyen, Jean-Pierre Franciscus Alexander Maria Ermes, Johan Michiel den Harder
-
Publication number: 20190346526Abstract: The invention provides for a medical instrument (100) comprising a processor (134) and a memory (138) containing machine executable instructions (140). Execution of the machine executable instructions causes the processor to: receive (200) a first magnetic resonance image data set (146) descriptive of a first region of interest (122) of a subject (118) and receive (202) at least one second magnetic resonance image data set (152, 152?) descriptive of a second region of interest (124) of the subject. The first region of interest at least partially comprises the second region of interest. Execution of the machine executable instructions further cause the processor to receive (204) an analysis region (126) within both the first region of interest and within the second region of interest.Type: ApplicationFiled: November 10, 2017Publication date: November 14, 2019Inventors: FABIAN WENZEL, MARTIN BERGTHOLDT, FRANK OLAF THIELE
-
Patent number: 10438345Abstract: A symmetric model representing anatomical structures of the brain is adapted to a brain scan image with a transform. First and second points provided on first and second hemispheres of the brain image and a patient-specific symmetric anatomical model of the brain is computed based on the transformation.Type: GrantFiled: March 17, 2014Date of Patent: October 8, 2019Assignee: Koninklijke Philips N.V.Inventors: Fabian Wenzel, Elizabeth Anne Moore, Thomas Heiko Stehle, Astrid Ruth Franz, Carsten Meyer
-
Patent number: 10433802Abstract: A medical system (10) and method detects amyloid brain plaque. A positron emission tomography (PET) image of a brain is received. The PET image is generated from a radiotracer binding to amyloid brain plaque. A cortical profile is generated from the PET image. The cortical profile describes cortical tracer uptake to varying projection depths inside the cortex of the brain. The PET image is quantitatively assessed using the cortical profile and/or at least a portion of the cortical profile is displayed.Type: GrantFiled: June 6, 2014Date of Patent: October 8, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Fabian Wenzel, Stewart Young
-
Patent number: 10373375Abstract: Image processing system 100 for enabling a user to navigate through image data having at least three spatial dimensions by displaying views 155 of the image data, the image processing system comprising an image device 110 comprising a display 130 for displaying the views of the image data and an orientation sensor 120 for measuring an orientation of the image device with respect to a reference orientation for providing rotation data 125 indicative of a device rotation of the image device, means 140 for establishing a center of rotation in the image data, and an image processor 150 for establishing the views of the image data in relation to the device rotation by, for establishing a current view, (i) receiving the rotation data from the orientation sensor, (ii) establishing a view rotation in relation to the device rotation, and (iii) establishing the current view in dependence on the view rotation around the center of rotation with respect to a reference view.Type: GrantFiled: March 30, 2012Date of Patent: August 6, 2019Assignee: Koninklijke Philips N.V.Inventors: Fabian Wenzel, Roel Truyen, Jean-Pierre Franciscus Alexander Maria Ermes, Johan Michiel Den Harder
-
Patent number: 10331981Abstract: A system and method are provided for brain tissue classification, which involves applying an automated tissue classification technique to an image of a brain based on a prior probability map, thereby obtaining a tissue classification map of the brain. A user is enabled to, using a user interaction subsystem, provide user feedback which is indicative of a) an area of misclassification in the tissue classification map and b) a correction of the misclassification. The prior probability map is then adjusted based on the user feedback to obtain an adjusted prior probability map, and the automated tissue classification technique is re-applied to the image based on the adjusted prior probability map. An advantage over a direct correction of the tissue classification map may be that the user does not need to indicate the area of misclassification or the correction of the misclassification with a highest degree of accuracy. Rather, it may suffice to provide an approximate indication thereof.Type: GrantFiled: April 25, 2016Date of Patent: June 25, 2019Assignee: Koninklijke Philips N.V.Inventors: Fabian Wenzel, Thomas Heiko Stehle, Lyubomir Georgiev Zagorchev, Jochen Peters, Martin Bergtholdt, Carsten Meyer
-
Patent number: 10282917Abstract: A system and method are provided for interactive editing of a mesh which has been applied to a three-dimensional (3D) image to segment an anatomical structure shown therein. To facilitate the interactive editing of the applied mesh, a view of the 3D image is generated which shows a mesh part to be edited, with the view being established based on a local orientation of the mesh part. Advantageously, the view may be generated to be substantially orthogonally to the mesh part, or to a centerline of the anatomical structure which is determined as a function of the mesh part. Accordingly, an orthogonal view is established which facilitates the user in carrying out the editing action with respect to the mesh part. It is therefore not needed for the user to manually navigate through the 3D image to obtain a view which is suitable for mesh editing, which is typically time consuming.Type: GrantFiled: June 29, 2016Date of Patent: May 7, 2019Assignee: Koninklijke Philips N.V.Inventors: Thomas Heiko Stehle, Fabian Wenzel, Carsten Meyer, Lyubomir Georgiev Zagorchev, Martin Bergtholdt, Jochen Peters
-
Patent number: 10269115Abstract: A method includes obtaining an image of a subject to process via statistical testing. The method further includes obtaining a subject personalized template image, which is personalized to the subject based on a predetermined characteristic of the subject. The method further includes registering the subject personalized template image to the image of the subject. The method further includes performing statistical testing using the subject personalized template image registered to the image of the subject. A computing system (304) includes a memory (320) that stores a statistical testing module (320) and data (324). The computing system further includes a processor (318) that executes the one or more instructions, which causes the processor to: perform voxel-wise statistical testing of a functional image using a subject personalized template image for stereotactical normalization of the voxel-wise statistical testing.Type: GrantFiled: July 6, 2015Date of Patent: April 23, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Fabian Wenzel, Stewart Young
-
Publication number: 20180344161Abstract: The present invention relates to a medical instrument for automatically detecting affected regions in an examination area of a subject comprising: a memory containing machine executable instructions; and a processor for controlling the medical instrument, wherein execution of the machine executable instructions causes the processor to control the instrument to: obtain a first anatomical image of the examination area and a first image of fibers of the examination area, wherein a first parameter and a second parameter describe characteristics of the first anatomical image and the first image of fibers respectively; segment the first anatomical image into a plurality of segments indicating respective tissues and/or structures in the examination area; identify first lesions in the segmented first anatomical image; use values of the first and/or second parameters for determining seed points in the identified first lesions for a tracking algorithm for tracking first fibers in the first image of fibers.Type: ApplicationFiled: November 11, 2016Publication date: December 6, 2018Inventors: CARSTEN MEYER, FABIAN WENZEL, MARTIN BERGTHOLDT, THOMAS HEIKO STEHLE, LYUBOMIR GEORGIEV ZAGORCHEV
-
Patent number: 10133444Abstract: An apparatus and related method for image viewing. The apparatus (V) allows to store, learn and remember preferred user views ?1-M for each anatomical structure F1-FN of interest. In any new image, the apparatus (V) affords automatically generating the preferred by the user for one or more of the structures (F1-FN) by a simple user input operation such as clicking with a mouse (PT) on any position within the displayed structure of interest (F1-FN).Type: GrantFiled: March 18, 2014Date of Patent: November 20, 2018Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Carsten Meyer, Astrid Ruth Franz, Thomas Heiko Stehle, Fabian Wenzel
-
Patent number: 10015250Abstract: Cache controller (120) for use in a system (180) comprising an image client (100) and an image server (140), the image client enabling a user to navigate through image data having at least three spatial dimensions by displaying views of the image data that are obtained from the image server in dependence on navigation requests of the user, and the cache controller comprising a processor (122) configured for obtaining content data indicative of a content shown in a current view of the image client (100), the current view representing a first viewpoint in the three spatial dimensions of the image data, the processor being further configured for predicting a view request of the image client in dependence on the content data, the view request corresponding to a view representing a second viewpoint in the three spatial dimensions of the image data, and a communication means (124) for obtaining the view from the image server in dependence on the view request, and for caching the view in a cache (130).Type: GrantFiled: October 27, 2011Date of Patent: July 3, 2018Assignee: Koninklijke Philips N.V.Inventors: Fabian Wenzel, Thomas Netsch, Sebastian Peter Michael Dries
-
Publication number: 20180158252Abstract: A system and method are provided for interactive editing of a mesh which has been applied to a three-dimensional (3D) image to segment an anatomical structure shown therein. To facilitate the interactive editing of the applied mesh, a view of the 3D image is generated which shows a mesh part to be edited, with the view being established based on a local orientation of the mesh part. Advantageously, the view may be generated to be substantially orthogonally to the mesh part, or to a centerline of the anatomical structure which is determined as a function of the mesh part. Accordingly, an orthogonal view is established which facilitates the user in carrying out the editing action with respect to the mesh part. It is therefore not needed for the user to manually navigate through the 3D image to obtain a view which is suitable for mesh editing, which is typically time consuming.Type: ApplicationFiled: June 29, 2016Publication date: June 7, 2018Inventors: Thomas Heiko Stehle, Fabian Wenzel, Carsten Meyer, Georgiev ZAGORCHEV, Martin Bergtholdt, Jochen Peters
-
Publication number: 20180137394Abstract: A system and method are provided for brain tissue classification, which involves applying an automated tissue classification technique to an image of a brain based on a prior probability map, thereby obtaining a tissue classification map of the brain. A user is enabled to, using a user interaction subsystem, provide user feedback which is indicative of a) an area of misclassification in the tissue classification map and b) a correction of the misclassification. The prior probability map is then adjusted based on the user feedback to obtain an adjusted prior probability map, and the automated tissue classification technique is re-applied to the image based on the adjusted prior probability map. An advantage over a direct correction of the tissue classification map may be that the user does not need to indicate the area of misclassification or the correction of the misclassification with a highest degree of accuracy. Rather, it may suffice to provide an approximate indication thereof.Type: ApplicationFiled: April 25, 2016Publication date: May 17, 2018Applicant: Koninklijke Philips N.V.Inventors: FABIAN WENZEL, THOMAS HEIKO STEHLE, LYUBOMIR GEORGIEV ZAGORCHEV, JOCHEN PETERS, MARTIN BERGTHOLDT, CARSTEN MEYER
-
Publication number: 20180005455Abstract: The present invention relates to medical image editing. In order to facilitate the medical image editing process, a medical image editing device (50) is provided that comprises a processor unit (52), an output unit (54), and an interface unit (56). The processor unit (52) is configured to provide a 3D surface model of an anatomical structure of an object of interest. The 3D surface model comprises a plurality of surface sub-portions. The surface sub-portions each comprise a number of vertices, and each vertex is assigned by a ranking value. The processor unit (52) is further configured to identify at least one vertex of vertices adjacent to the determined point of interest as an intended vertex. The identification is based on a function of a detected proximity distance to the point of interest and the assigned ranking value. The output unit (54) is configured to provide a visual presentation of the 3D surface model.Type: ApplicationFiled: December 7, 2015Publication date: January 4, 2018Inventors: Fabian WENZEL, Thomas Heiko STEHLE, Carsten MEYER, Lyubomir Georgiev ZAGORCHEV, Jochen PETERS, Martin BERGTHOLDT
-
Patent number: 9824457Abstract: A system (100) and method is provided for performing a model-based segmentation of an anatomical structure in a medical image of a patient. The medical image (022) is accessed. Moreover, model data (162) is provided which defines a deformable model for segmenting the type of anatomical structure. The model-based segmentation of the anatomical structure is performed by adapting the deformable model to the anatomical structure in the medical image using an adaptation technique.Type: GrantFiled: August 21, 2015Date of Patent: November 21, 2017Assignee: Koninklijke Philips N.V.Inventors: Fabian Wenzel, Carsten Meyer, Thomas Heiko Stehle
-
Patent number: 9767594Abstract: Image processing apparatus 110 for processing a medical image, comprising an input 120 for obtaining the medical image 122 and medical data 124, the medical image constituting a field of view in three-dimensional [3D] patient data, and the medical data showing an anatomical context of a content of the field of view, an output 130 for providing an output image 160 comprising the medical image and a visualization of the medical data, the medical data constituting non-patient specific medical data, and the imaging processing apparatus further comprising a processor 140 for (i) performing an image alignment between the medical image and the medical data for obtaining a transformation providing a position of the content with respect to its anatomical context, and (ii) using the transformation for establishing a graphical representation of the field of view in the visualization of the medical data at said position.Type: GrantFiled: January 10, 2013Date of Patent: September 19, 2017Assignee: Koninklijke Philips N.V.Inventors: Sebastian Peter Michael Dries, Thomas Netsch, Fabian Wenzel