Patents by Inventor Fabien Sorin

Fabien Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240381919
    Abstract: An edible fiber contains a biopolymer and a plasticiser. A weight ratio of the biopolymer to the plasticiser is about 1:0.25 to about 1:3. The fiber has a diameter of about 0.5 ?m to about 1 mm.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Jan Engmann, Emma Rose Janecek, Veronique Michaud, Yunpeng Qu, Federica Sordo, Fabien Sorin, Francesco Stellacci, Timothy James Wooster
  • Publication number: 20240316547
    Abstract: One aspect of the present invention relates to a method of fabricating a chemically active fibre device (1) by thermal drawing. The method comprises the steps of providing a preform, the preform comprising a support element (3) at least partially made of a first polymeric material; and carrying out a thermal drawing process of the preform to produce a thermally drawn fibre. The preform comprises one or more chemically active agents and/or biological materials configured to react with a fluid sample when the one or more chemically active agents and/or biological materials are in contact with the fluid sample. In this manner miniaturised lab-in-fibre devices can be fabricated.
    Type: Application
    Filed: January 20, 2021
    Publication date: September 26, 2024
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Fabien SORIN, Bastien SCHYRR
  • Publication number: 20240300164
    Abstract: A method of manufacturing a fibre comprising a lined channel, using a draw apparatus, the method comprising: providing a preform, comprising a channel extending through the preform, to the draw apparatus; feeding a liner into the channel; heating a portion of the preform; and drawing the heated portion of the preform in order to form a fibre, wherein the liner is held within the channel of the fibre to provide a lined channel within the fibre.
    Type: Application
    Filed: December 22, 2021
    Publication date: September 12, 2024
    Inventors: Guang-Zhong Yang, Mohamed Ek Abdelaziz, Burak Temelkuran, Andreas Leber, Fabien Sorin
  • Patent number: 11579523
    Abstract: A method for manufacturing glass-based micro- and nanostructure comprising the step of dewetting a thin-film glass layer on a textured substrate to form the micro- and nanostructure from the thin-film glass layer.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: February 14, 2023
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Fabien Sorin, Louis Martin-Monier, Alexis Page, Tapajyoti Dasgupta
  • Publication number: 20220307878
    Abstract: The present invention concerns an elongated capacitive sensor for fluid monitoring. The sensor comprising: a fibre support made of a dielectric material or dielectric composite material; and a first electrode and a second electrode arranged longitudinally along the fibre support, the first and second electrodes forming together with the fibre support a capacitive sensing element whose capacitance is dependent upon one or more electrical properties of one or more materials inside the support and/or outside the support, and/or is dependent upon a change of materials configuration and associated overall change of one or more electrical properties inside the support and/or outside the support.
    Type: Application
    Filed: August 26, 2020
    Publication date: September 29, 2022
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Fabien SORIN, William ESPOSITO, Véronique MICHAUD, Chaoqun DONG, Baris ÇAGLAR, Dang Tung NGUYEN
  • Publication number: 20220151515
    Abstract: A sensor comprising an elongate member comprising an electrochemical sensor comprising an electrochemical filament extending along the length of the elongate member, wherein the elongate member comprises a fibre formed from a drawable material.
    Type: Application
    Filed: March 31, 2020
    Publication date: May 19, 2022
    Inventors: Guang-Zhong Yang, Salzitsa Anastasova-Ivanova, Burak Temelkuran, Mohamed E.M.K. Abdelaziz, Fabien Sorin
  • Patent number: 11141942
    Abstract: The present invention concerns a thermal drawing method for forming fibers, wherein said fibers are made at least from a stretchable polymer. The present invention also concerns drawn fibers made by the process.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 12, 2021
    Assignee: ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)
    Inventors: Fabien Sorin, Yunpeng Qu, Marco Volpi, Wei Yan, Dang Tung Nguyen, Alexis Page
  • Publication number: 20210000155
    Abstract: The invention provides an edible fiber comprising a biopolymer and a plasticiser; wherein the weight ratio of biopolymer to plasticiser is about 1:0.25 to about 1:3; and wherein the fiber has a diameter of about 0.5 ?m to about 1 mm.
    Type: Application
    Filed: February 12, 2019
    Publication date: January 7, 2021
    Inventors: Jan Engmann, Emma Rose Janecek, Veronique Michaud, Yunpeng Qu, Federica Sordo, Fabien Sorin, Francesco Stellacci, Timothy James Wooster
  • Publication number: 20200257194
    Abstract: A method for manufacturing glass-based micro- and nanostructure comprising the step of dewetting a thin-film glass layer on a textured substrate to form the micro- and nanostructure from the thin-film glass layer.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 13, 2020
    Inventors: Fabien Sorin, Louis Martin-Monier, Alexis Page, Tapajyoti Dasgupta
  • Patent number: 10704167
    Abstract: The method for drawing a fiber with a textured surface comprises the following steps: —forming of a preform from which the fiber is to be drawn with a textured surface; —addition of an outer layer to the textured preform to preserve the shape of the texture of the preform surface during the drawing operation; —drawing of a fiber from the preform, whereby the fiber keeps the formed texture of the preform surface and —removing the additional outer layer to leave the original surface textured fiber exposed. The obtained fiber can be used as a mold to form a textured hollow channel in another material, as a surface coating and as a pressure detector.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: July 7, 2020
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Fabien Sorin, Tung Dang Nguyen, Yunpeng Qu, Alexis Page, Wei Yan
  • Patent number: 10338000
    Abstract: There is provided a sensor fiber including an electrically insulating material having a fiber length. At least one transduction element is disposed along at least a portion of the fiber length and is arranged for exposure to an intake species. A photoconducting element is in optical communication with the transduction element. At least one pair of electrically conducting electrodes are in electrical connection with the photoconducting element. The pair of electrodes extend the fiber length.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: July 2, 2019
    Assignees: Massachusetts Institute of Technology, FLIR Systems, Incorporated
    Inventors: Alexander Gumennik, Alexander Mark Stolyarov, Brent Richard Schell, Chong Hou, Guillaume Romain Lestoquoy, Fabien Sorin, William Richard McDaniel, II, Yoel Fink, Aimee Rose, John Dimitris Joannopoulos
  • Publication number: 20190047240
    Abstract: The present invention concerns a thermal drawing method for forming fibers, wherein said fibers are made at least from a stretchable polymer. The present invention also concerns drawn fibers made by the process.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 14, 2019
    Inventors: Fabien SORIN, Yunpeng QU, Marco VOLPI, Wei YAN, Dang Tung NGUYEN, Alexis PAGE
  • Publication number: 20180327931
    Abstract: The method for drawing a fiber with a textured surface comprises the following steps: —forming of a preform from which the fiber is to be drawn with a textured surface; —addition of an outer layer to the textured preform to preserve the shape of the texture of the preform surface during the drawing operation; —drawing of a fiber from the preform, whereby the fiber keeps the formed texture of the preform surface and—removing the additional outer layer to leave the original surface textured fiber exposed. The obtained fiber can be used as a mold to form a textured hollow channel in another material, as a surface coating and as a pressure detector.
    Type: Application
    Filed: November 21, 2016
    Publication date: November 15, 2018
    Inventors: Fabien Sorin, Tung Dang Nguyen, Yunpeng Qu, Alexis Page, Wei Yan
  • Patent number: 8863556
    Abstract: The invention provides techniques for drawing fibers that include conducting, semiconducting, and insulating materials in intimate contact and prescribed geometries. The resulting fiber exhibits engineered electrical and optical functionalities along extended fiber lengths. The invention provides corresponding processes for producing such fibers, including assembling a fiber preform of a plurality of distinct materials, e.g., of conducting, semiconducting, and insulating materials, and drawing the preform into a fiber.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Mehmet Bayindir, Fabien Sorin, Dursen S. Hinczewski, Shandon D. Hart, Yoel Fink, John D Joannopoulos
  • Publication number: 20140212084
    Abstract: There is provided a sensor fiber including an electrically insulating material having a fiber length. At least one transduction element is disposed along at least a portion of the fiber length and is arranged for exposure to an intake species. A photoconducting element is in optical communication with the transduction element. At least one pair of electrically conducting electrodes are in electrical connection with the photoconducting element. The pair of electrodes extend the fiber length.
    Type: Application
    Filed: September 24, 2013
    Publication date: July 31, 2014
    Applicants: FLIR Systems, Incorporated, Massachusetts Institute of Technology
    Inventors: Alexander Gumennik, Alexander Mark Stolyarov, Brent Richard Schell, Chong Hou, Guillaume Romain Lestoquoy, Fabien Sorin, William Richard McDaniel, II, Yoel Fink, Aimee Rose, John Dimitris Joannopoulos
  • Patent number: 8663522
    Abstract: Fiber draw synthesis process. The process includes arranging reactants in the solid state in proximate domains within a fiber preform. The preform is fluidized at a temperature below the melting temperature of the reactants. The fluidized preform is drawn into a fiber thereby bringing the reagents in the proximate domains into intimate contact with one another resulting in a chemical reaction between the reactants thereby synthesizing a compound within the fiber. The reactants may be dissolved or mixed in a host material within the preform. In a preferred embodiment, the reactants are selenium and zinc.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas D. Orf, Sylvain Danto, Ofer Shapira, Fabien Sorin, Yoel Fink, John D. Joannopoulos
  • Patent number: 8630519
    Abstract: Photodetecting fiber. The fiber detects and localizes an incident optical beam. A semiconducting core is in intimate contact with a material forming a resistive channel that breaks axial symmetry. The resistive channel has a resistivity between that of metals and the semiconducting core, enabling the imposition of non-uniform, convex electric potential distributions along the fiber axis allowing photo-current measurements along the fiber.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: January 14, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Fabien Sorin, Guillaume Lestoquoy, Sylvain Danto, Yoel Fink, John D. Joannopoulos
  • Patent number: 8442078
    Abstract: The laser includes an optical fiber including a cavity containing a microfluidic gain medium bounded by a composite structure of alternating layers of high and low index materials forming an axially invariant, rotationally symmetric photonic bandgap cavity. The optical fiber also includes at least one microfluidic channel containing liquid crystal modulators in the fiber cladding extending in an axial direction and further includes a pair of electrodes flanking the microfluidic channel. An electrical potential across the pair of electrodes will rotate the liquid crystal molecules to rotate the linearly polarized state of light emitted from the cavity. An external linear polarizer is disposed around the fiber to modulate azimuthal laser intensity distribution.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 14, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexander Stolyarov, Lei Wei, Ofer Shapira, Fabien Sorin, Yoel Fink, John D. Joannopoulos
  • Publication number: 20120267820
    Abstract: Fiber draw synthesis process. The process includes arranging reactants in the solid state in proximate domains within a fiber preform. The preform is fluidized at a temperature below the melting temperature of the reactants. The fluidized preform is drawn into a fiber thereby bringing the reagents in the proximate domains into intimate contact with one another resulting in a chemical reaction between the reactants thereby synthesizing a compound within the fiber. The reactants may be dissolved or mixed in a host material within the preform. In a preferred embodiment, the reactants are selenium and zinc.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 25, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Nicholas D. Orf, Sylvain Danto, Ofer Shapira, Fabien Sorin, Yoel Fink, John D. Joannopoulos
  • Publication number: 20120263409
    Abstract: Photodetecting fiber. The fiber detects and localizes an incident optical beam. A semiconducting core is in intimate contact with a material forming a resistive channel that breaks axial symmetry. The resistive channel has a resistivity between that of metals and the semiconducting core, enabling the imposition of non-uniform, convex electric potential distributions along the fiber axis allowing photo-current measurements along the fiber.
    Type: Application
    Filed: October 5, 2011
    Publication date: October 18, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Fabien Sorin, Guillaume Lestoquoy, Sylvain Danto, Yoel Fink, John D. Joannopoulos