Patents by Inventor Fabio Pellizzer
Fabio Pellizzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250254955Abstract: Methods, systems, and devices for memory architectures with replacement gate through piers are described. A memory architecture with relatively uniform memory cell thickness may be formed by forming a stack of materials including alternating layers of sacrificial material and dielectric material. The processing steps may include forming piers and forming cavities for pillars through the stack of materials. The pillars and electrodes may be formed within the cavities, and a subset of the piers may be removed. The layers of sacrificial material may be removed. A protective liner may be deposited around the electrodes and the remaining piers before depositing layers of metal in place of the sacrificial material. The cavities exposed by removing the subset of piers may be filled with new piers. The remaining piers are removed, and memory cells may be formed between the pillars and the electrodes. Then the removed piers are replaced.Type: ApplicationFiled: July 29, 2024Publication date: August 7, 2025Inventors: Lorenzo Fratin, Fabio Pellizzer, Rajasekhar Venigalla, Enrico Varesi, Matthew Thorum, Stephen W. Russell, Nirav Vora
-
Patent number: 12374393Abstract: Methods, systems, and devices for varying-polarity read operations for polarity-written memory cells are described. Memory cells may be programmed to store different logic values based on applying write voltages of different polarities to the memory cells. A memory device may read the logic values based on applying read voltages to the memory cells, and the polarity of the read voltages may vary such that at least some read voltages have one polarity and at least some read voltages have another polarity. The read voltage polarity may vary randomly or according to a pattern and may be controlled by the memory device or by a host device for the memory device.Type: GrantFiled: February 23, 2024Date of Patent: July 29, 2025Assignee: Micron Technology, Inc.Inventors: Innocenzo Tortorelli, Hari Giduturi, Fabio Pellizzer
-
Patent number: 12367933Abstract: Systems, methods, and apparatuses are provided for unipolar programming of memory cells in a semiconductor device. A memory has a plurality of self-selecting memory cells and circuitry configured to program a self-selecting memory cell of the plurality of self-selecting memory cells to a first data state or a second data state by applying a current pulse to the self-selecting memory cell. The current is a set pulse or a reset pulse. The set pulse and the reset pulse have a same polarity.Type: GrantFiled: July 19, 2022Date of Patent: July 22, 2025Assignee: Micron Technology, Inc.Inventors: Innocenzo Tortorelli, Mattia Robustelli, Alessandro Sebastiani, Matteo Impala′, Fabio Pellizzer
-
Publication number: 20250234560Abstract: Methods for, apparatuses with and vertical 3D memory devices are described. A vertical 3D memory device may comprise: a plurality of contacts associated with a plurality of digit lines and extending through a substrate; a plurality of word line plates separated from one another by respective dielectric layers and including a first plurality of word line plates and a second plurality of word line plates; a first dielectric material positioned between the first plurality and the second plurality of word line plates, the first dielectric material extending in a serpentine shape over the substrate; a conformal material positioned between the first dielectric material and the first and second plurality of word line plates, respectively; a plurality of spacers; a plurality of pillars coupled with the plurality of contacts; and a plurality of storage elements each comprising chalcogenide material positioned in a recess.Type: ApplicationFiled: January 13, 2025Publication date: July 17, 2025Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer
-
Publication number: 20250232799Abstract: Methods, systems, and devices for decoder architectures for three-dimensional memory devices are described. In some cases, a decoder for a memory device may include two portions. A first portion of the decoder may be manufactured on top of the memory array, and may include a pillar decoding portion to selectively bias a first array of decoding elements coupled with conductive pillars of the memory array and a word line decoding portion to selectively bias a second array of decoding elements coupled with word lines of the memory array. A second portion of the decoder may be implemented in a separate semiconductor device which may include a set of logic circuits configured to drive signal to a set of contacts bonded to contacts of the first portion to drive the digit lines, voltage sources, and gate lines.Type: ApplicationFiled: January 15, 2025Publication date: July 17, 2025Inventors: Lorenzo Fratin, Fabio Pellizzer, Paolo Fantini
-
Patent number: 12349371Abstract: Methods, systems, and devices for a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.Type: GrantFiled: February 15, 2022Date of Patent: July 1, 2025Assignee: Micron Technology, Inc.Inventors: Agostino Pirovano, Fabio Pellizzer
-
Patent number: 12336193Abstract: A semiconductor device includes first conductive lines extending in a first direction, second conductive lines extending in a second direction, memory cells disposed between the first conductive lines and the second conductive lines, each memory cell disposed at an intersection of a first conductive line and a second conductive line, and a passive material between the memory cells and at least one of the first conductive lines and the second conductive lines. Related semiconductor devices and electronic devices are disclosed.Type: GrantFiled: September 30, 2022Date of Patent: June 17, 2025Assignee: Micron Technology, Inc.Inventors: Innocenzo Tortorelli, Fabio Pellizzer
-
Publication number: 20250174283Abstract: Methods, systems, and devices for techniques for operating a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.Type: ApplicationFiled: December 4, 2024Publication date: May 29, 2025Inventors: Agostino Pirovano, Fabio Pellizzer, Innocenzo Tortorelli
-
Publication number: 20250159910Abstract: Methods, systems, and devices for memory device with a split pillar architecture are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars and cell material may be divided to form a first and second storage components and first and second pillars.Type: ApplicationFiled: November 19, 2024Publication date: May 15, 2025Inventors: Lorenzo Fratin, Fabio Pellizzer, Paolo Fantini
-
Publication number: 20250142838Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Spike current suppression is implemented using a folded access line structure. Each access line includes integrated top and bottom insulating layers that restrict current flow to the memory cells through a narrower middle portion of the access line. For near memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the meandering, folded circuit path that flows through the middle portion. Spike discharge that occurs when the memory cell is selected is reduced by this higher resistance path.Type: ApplicationFiled: December 27, 2024Publication date: May 1, 2025Inventors: Srivatsan Venkatesan, Fabio Pellizzer
-
Patent number: 12283316Abstract: Methods, systems, and devices for a cross-point pillar architecture for memory arrays are described. Multiple selector devices may be configured to access or activate a pillar within a memory array, where the selector devices may each be or include a chalcogenide material. A pillar access line may be coupled with multiple selector devices, where each selector device may correspond to a pillar associated with the pillar access line. Pillar access lines on top and bottom of the pillars of the memory array may be aligned in a square or rectangle formation, or in a hexagonal formation. Pillars and corresponding selector devices on top and bottom of the pillars may be located at overlapping portions of the pillar access lines, thereby forming a cross point architecture for pillar selection or activation. The selector devices may act in pairs to select or activate a pillar upon application of a respective selection voltage.Type: GrantFiled: January 11, 2024Date of Patent: April 22, 2025Assignee: Micron Technology, Inc.Inventors: Innocenzo Tortorelli, Fabio Pellizzer, Mattia Robustelli, Alessandro Sebastiani
-
Publication number: 20250120098Abstract: Methods for, apparatuses with, and vertical 3D memory devices are described. A vertical 3D memory device may comprise: a plurality of contacts associated with a plurality of digit lines and extending through a substrate; a plurality of word line plates separated from one another by respective dielectric layers and including a first plurality of word line plates and a second plurality of word line plates; a dielectric material positioned between the first plurality and the second plurality of word line plates, the dielectric material extending in a serpentine shape over the substrate; a plurality of pillars formed over and coupled with the plurality of contacts; and a plurality of storage elements each comprising chalcogenide material positioned in a recess between a respective word line plate and a respective pillar, wherein the recess is of an arch-shape, and the chalcogenide material in the recess contacts the respective word line plate.Type: ApplicationFiled: October 23, 2024Publication date: April 10, 2025Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer
-
Publication number: 20250107105Abstract: Methods, systems, and devices for split pillar architectures for memory devices are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars may be divided to form first and second pillars.Type: ApplicationFiled: December 13, 2024Publication date: March 27, 2025Inventors: Paolo Fantini, Fabio Pellizzer, Lorenzo Fratin
-
Patent number: 12236999Abstract: Methods, systems, and devices for decoder architectures for three-dimensional memory devices are described. In some cases, a decoder for a memory device may include two portions. A first portion of the decoder may be manufactured on top of the memory array, and may include a pillar decoding portion to selectively bias a first array of decoding elements coupled with conductive pillars of the memory array and a word line decoding portion to selectively bias a second array of decoding elements coupled with word lines of the memory array. A second portion of the decoder may be implemented in a separate semiconductor device which may include a set of logic circuits configured to drive signal to a set of contacts bonded to contacts of the first portion to drive the digit lines, voltage sources, and gate lines.Type: GrantFiled: June 1, 2022Date of Patent: February 25, 2025Assignee: Micron Technology, Inc.Inventors: Lorenzo Fratin, Fabio Pellizzer, Paolo Fantini
-
Publication number: 20250061943Abstract: Methods, systems, and devices for self-selecting memory with horizontal access lines are described. A memory array may include first and second access lines extending in different directions. For example, a first access line may extend in a first direction, and a second access line may extend in a second direction. At each intersection, a plurality of memory cells may exist, and each plurality of memory cells may be in contact with a self-selecting material. Further, a dielectric material may be positioned between a first plurality of memory cells and a second plurality of memory cells in at least one direction. each cell group (e.g., a first and second plurality of memory cells) may be in contact with one of the first access lines and second access lines, respectively.Type: ApplicationFiled: August 23, 2024Publication date: February 20, 2025Inventors: Lorenzo Fratin, Fabio Pellizzer, Agostino Pirovano, Russell L. Meyer
-
Patent number: 12219883Abstract: Methods, systems, and devices for techniques for forming self-aligned memory structures are described. Aspects include etching a layered assembly of materials including a first conductive material and a first sacrificial material to form a first set of channels along a first direction that creates a first set of sections. An insulative material may be deposited within each of the first set of channels and a second sacrificial material may be deposited onto the first set of sections and the insulating material. A second set of channels may be etched into the layered assembly of materials along a second direction that creates a second set of sections, where the second set of channels extend through the first and second sacrificial materials. Insulating material may be deposited in the second set of channels and the sacrificial materials removed leaving a cavity. A memory material may be deposited in the cavity.Type: GrantFiled: August 4, 2022Date of Patent: February 4, 2025Assignee: Micron Technology, Inc.Inventors: Stephen W. Russell, Andrea Redaelli, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer, Lorenzo Fratin
-
Patent number: 12219782Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Spike current suppression is implemented using a folded access line structure. Each access line includes integrated top and bottom insulating layers that restrict current flow to the memory cells through a narrower middle portion of the access line. For near memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the meandering, folded circuit path that flows through the middle portion. Spike discharge that occurs when the memory cell is selected is reduced by this higher resistance path.Type: GrantFiled: November 29, 2021Date of Patent: February 4, 2025Assignee: Micron Technology, Inc.Inventors: Srivatsan Venkatesan, Fabio Pellizzer
-
Patent number: 12219784Abstract: Methods for, apparatuses with and vertical 3D memory devices are described. A vertical 3D memory device may comprise: a plurality of contacts associated with a plurality of digit lines and extending through a substrate; a plurality of word line plates separated from one another by respective dielectric layers and including a first plurality of word line plates and a second plurality of word line plates; a first dielectric material positioned between the first plurality and the second plurality of word line plates, the first dielectric material extending in a serpentine shape over the substrate; a conformal material positioned between the first dielectric material and the first and second plurality of word line plates, respectively; a plurality of spacers; a plurality of pillars coupled with the plurality of contacts; and a plurality of storage elements each comprising chalcogenide material positioned in a recess.Type: GrantFiled: July 22, 2020Date of Patent: February 4, 2025Assignee: Micron Technology, Inc.Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer
-
Publication number: 20250037761Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder may include a first vertical n-type transistor and a second vertical n-type transistor that extends in a third direction relative to a die of a memory array. The first vertical n-type transistor may be configured to selectively couple an access line with a source node and the second n-type transistor may be configured to selectively couple the access line with a ground node. To activate the access line coupled with the first and second vertical n-type transistors, the first vertical n-type transistor may be activated, the second vertical n-type transistor may be deactivated, and the source node coupled with the first vertical n-type transistor may have a voltage applied that differs from a ground voltage.Type: ApplicationFiled: October 10, 2024Publication date: January 30, 2025Inventors: Paolo Fantini, Lorenzo Fratin, Fabio Pellizzer
-
Patent number: 12176042Abstract: Methods, systems, and devices for techniques for operating a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.Type: GrantFiled: February 15, 2022Date of Patent: December 24, 2024Assignee: Micron Technology, Inc.Inventors: Agostino Pirovano, Fabio Pellizzer, Innocenzo Tortorelli