Patents by Inventor Fabio Rigoni

Fabio Rigoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10459470
    Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 29, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
  • Patent number: 10439421
    Abstract: A linear charger circuit and method for providing an output current at an output node is presented. The circuit contains a pass device connected between an input node and the output node, first and second replica devices connected in parallel to the pass device, with their control terminals coupled to a control terminal of the pass device. The first replica device is coupled to a first circuit path for determining whether current output by the linear charger circuit shall be terminated. The second replica device is coupled to a second circuit path for providing feedback for controlling the pass device, a control circuit coupled to the second circuit path for controlling the pass device based on a quantity indicative of a current flowing through the second circuit path, and a switching circuit coupled to the second circuit path.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: October 8, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Selcuk Talay, Fabio Rigoni
  • Patent number: 10331152
    Abstract: A circuit for generating an output voltage, and regulating the output voltage to a target voltage, is described. The circuit comprises a pass device coupled between an input voltage level and an output voltage level, an error amplifier stage configured to generate a first control voltage on the basis of a reference voltage and the output voltage, a buffer stage configured to generate a drive signal for the pass device on the basis of the first control voltage, and a tracking circuit configured to track a voltage across the pass device and to generate a second control voltage on the basis of the voltage across the pass device. The buffer stage comprises a variable resistance element, for limiting a current flowing through the buffer stage on the basis of the second control voltage.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 25, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni
  • Patent number: 10248145
    Abstract: A voltage regulator to provide a load current at an output node is presented. The voltage regulator has a pass transistor for providing the load current at the output node from an input node. The voltage regulator contains a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage at a gate of a drive transistor. The voltage regulator has voltage regulation means to set the drive voltage in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The driver stage has the drive transistor and a diode transistor, wherein the diode transistor forms a current mirror with the pass transistor. The driver stage has a current amplifier amplifies a drive current through the drive transistor to provide an amplified current through the diode transistor.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: April 2, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20190036353
    Abstract: A linear charger circuit and method for providing an output current at an output node is presented. The circuit contains a pass device connected between an input node and the output node, first and second replica devices connected in parallel to the pass device, with their control terminals coupled to a control terminal of the pass device. The first replica device is coupled to a first circuit path for determining whether current output by the linear charger circuit shall be terminated. The second replica device is coupled to a second circuit path for providing feedback for controlling the pass device, a control circuit coupled to the second circuit path for controlling the pass device based on a quantity indicative of a current flowing through the second circuit path, and a switching circuit coupled to the second circuit path.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: Mihail Jefremow, Selcuk Talay, Fabio Rigoni
  • Publication number: 20190028095
    Abstract: A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 24, 2019
    Inventors: Jerome Sanchez, Fabio Rigoni, Jan Grabinski, Ali Zahabi
  • Patent number: 10152071
    Abstract: This application relates to a circuit for generating an output voltage and regulating the output voltage to a target voltage. The circuit includes a switchable voltage divider circuit configured to generate a feedback voltage that is a variable fraction of the output voltage, an error amplifier stage configured to generate a control voltage on the basis of a reference voltage and the variable fraction of the output voltage, a buffer stage configured to generate the output voltage on the basis of the control voltage, and a charge injection circuit configured to inject charge at an intermediate node between the error amplifier stage and the buffer stage to thereby modify the control voltage generated by the error amplifier stage. The application further relates to a method of operating such circuit.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: December 11, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20180329440
    Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
  • Publication number: 20180292853
    Abstract: A circuit for generating an output voltage, and regulating the output voltage to a target voltage, is described. The circuit comprises a pass device coupled between an input voltage level and an output voltage level, an error amplifier stage configured to generate a first control voltage on the basis of a reference voltage and the output voltage, a buffer stage configured to generate a drive signal for the pass device on the basis of the first control voltage, and a tracking circuit configured to track a voltage across the pass device and to generate a second control voltage on the basis of the voltage across the pass device. The buffer stage comprises a variable resistance element, for limiting a current flowing through the buffer stage on the basis of the second control voltage.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 11, 2018
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20180239380
    Abstract: A voltage regulator to provide a load current at an output node is presented. The voltage regulator has a pass transistor for providing the load current at the output node from an input node. The voltage regulator contains a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage at a gate of a drive transistor. The voltage regulator has voltage regulation means to set the drive voltage in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The driver stage has the drive transistor and a diode transistor, wherein the diode transistor forms a current mirror with the pass transistor. The driver stage has a current amplifier amplifies a drive current through the drive transistor to provide an amplified current through the diode transistor.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
  • Patent number: 10048710
    Abstract: A voltage regulator which provides at an output node a load current at an output voltage is described. The voltage regulator comprises a pass transistor for providing the load current at the output node from an input node, and a driver stage configured to set the gate voltage of the pass transistor based on a drive current. The voltage regulator has voltage regulation means to set the drive current in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The voltage regulator has bypass regulation means to set the drive current in dependence of an indication of the gate-to-source voltage at the pass transistor and in dependence of a target voltage for the gate—to activate the voltage regulation means and/or the bypass regulation means. source voltage. The voltage regulator also comprises mode selection means.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 14, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Dan Ciomaga, Marcus Weis, Stephan Drebinger, Fabio Rigoni
  • Patent number: 10001795
    Abstract: A linear regulator is presented. It comprises a first amplifier stage, one of the inputs being coupled with the output of the linear regulator. It has an intermediate amplifier stage. The input of the intermediate amplifier stage is coupled to the output of the first amplifier stage. It has a driver stage having a pass device driven by the output of the driver stage. The output of the pass device provides the output of the linear regulator. The regulator has a voltage-to-current feedback circuit coupled with the driver stage and the output of the first amplifier stage for regulating the output resistance of the first amplifier stage depending on load conditions of the linear regulator. The voltage-to-current feedback circuit has a transistor and a current limitation circuit to limit the regulation of the output resistance of the first amplifier stage to low load conditions of the linear regulator.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: June 19, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Dan Ciomaga, Qiao Yang, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20170269619
    Abstract: This application relates to a circuit for generating an output voltage and regulating the output voltage to a target voltage. The circuit includes a switchable voltage divider circuit configured to generate a feedback voltage that is a variable fraction of the output voltage, an error amplifier stage configured to generate a control voltage on the basis of a reference voltage and the variable fraction of the output voltage, a buffer stage configured to generate the output voltage on the basis of the control voltage, and a charge injection circuit configured to inject charge at an intermediate node between the error amplifier stage and the buffer stage to thereby modify the control voltage generated by the error amplifier stage. The application further relates to a method of operating such circuit.
    Type: Application
    Filed: November 21, 2016
    Publication date: September 21, 2017
    Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20170205841
    Abstract: A voltage regulator which provides at an output node a load current at an output voltage is described. The voltage regulator comprises a pass transistor for providing the load current at the output node from an input node, and a driver stage configured to set the gate voltage of the pass transistor based on a drive current. The voltage regulator has voltage regulation means to set the drive current in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The voltage regulator has bypass regulation means to set the drive current in dependence of an indication of the gate-to-source voltage at the pass transistor and in dependence of a target voltage for the gate—to activate the voltage regulation means and/or the bypass regulation means. source voltage.
    Type: Application
    Filed: May 23, 2016
    Publication date: July 20, 2017
    Inventors: Mihail Jefremow, Dan Ciomaga, Marcus Weis, Stephan Drebinger, Fabio Rigoni
  • Publication number: 20170060157
    Abstract: A linear regulator is presented. It comprises a first amplifier stage, one of the inputs being coupled with the output of the linear regulator. It has an intermediate amplifier stage. The input of the intermediate amplifier stage is coupled to the output of the first amplifier stage. It has a driver stage having a pass device driven by the output of the driver stage. The output of the pass device provides the output of the linear regulator. The regulator has a voltage-to-current feedback circuit coupled with the driver stage and the output of the first amplifier stage for regulating the output resistance of the first amplifier stage depending on load conditions of the linear regulator. The voltage-to-current feedback circuit has a transistor and a current limitation circuit to limit the regulation of the output resistance of the first amplifier stage to low load conditions of the linear regulator.
    Type: Application
    Filed: August 26, 2016
    Publication date: March 2, 2017
    Inventors: Mihail Jefremow, Dan Ciomaga, Qiao Yang, Stephan Drebinger, Fabio Rigoni
  • Patent number: 9507357
    Abstract: The present document relates to a current sensing and/or control circuit with reduced sensing errors. A current control circuit for controlling a load current into an electronic device is described. The current control circuit comprises an array of control transistors configured to adjust the load current provided at an output of the array of control transistors. The load current is drawn from a power supply at an input voltage. Furthermore, the power supply is coupled to an input of the array of control transistors. The circuit further comprises a reference transistor coupled to the power supply at an input of the reference transistor and a reference current source configured to draw a reference current at an output of the reference transistor.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: November 29, 2016
    Assignee: Dialog Semiconductor GmbH
    Inventors: Marcus Weis, Stephan Drebinger, Fabio Rigoni
  • Patent number: 9455587
    Abstract: A method for charging a battery is provided, wherein current pulses are supplied to the battery, wherein each pulse is followed by a rest period during which no current is supplied to the battery, and wherein the state of charge of the battery is determined during the rest period.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: September 27, 2016
    Assignee: Dialog Semiconductor GmbH
    Inventors: Otto Schumacher, Olivier Girard, Joao Paulo Trierveiler Martins, Hartmut Sturm, Fabio Rigoni
  • Publication number: 20160169947
    Abstract: A measurement circuit for providing the maximum and/or minimum voltage of a time-variant electrical input signal is presented. The measurement circuit contains a voltage reference unit to provide voltage reference signals and a comparator unit comprising multiple comparators. Each comparator receiving the electrical input signal at a first comparator input and a different voltage reference signal from the voltage reference unit at its second comparator input. The comparator unit provides comparator output signals based on said electrical input signal and said voltage reference signals. A logic unit receives the comparator output signals and provides a voltage output signal indicative of the maximum and/or minimum voltage of the electrical input signal based on the comparator output signals. The logic unit provides adaptation information to the voltage reference entity. The is adaptation information is dependent on the comparator output signals.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Michele De Fazio, Andrea Acquas, Fabio Rigoni
  • Patent number: 9306455
    Abstract: A driver circuit for a switched-mode power converter is configured to perform hysteretic control of a switched-mode power converter. The switched-mode power converter comprises an inductor configured to store energy during a first state of the switch and to release energy towards a load of the switched-mode power converter during a second state of the switch. The driver circuit comprises a filter unit which is configured to determine a command signal based on a gate control signal applied to a gate of the switch. The command signal is indicative of a current through the inductor. The driver circuit comprises hysteretic control circuitry configured to generate the gate control signal based on the command signal; wherein the switch alternates between the first and second state when being subjected to the gate control signal.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 5, 2016
    Assignee: Dialog Semiconductor GmbH
    Inventor: Fabio Rigoni
  • Publication number: 20150137774
    Abstract: The present document relates to a current sensing and/or control circuit with reduced sensing errors. A current control circuit for controlling a load current into an electronic device is described. The current control circuit comprises an array of control transistors configured to adjust the load current provided at an output of the array of control transistors. The load current is drawn from a power supply at an input voltage. Furthermore, the power supply is coupled to an input of the array of control transistors. The circuit further comprises a reference transistor coupled to the power supply at an input of the reference transistor and a reference current source configured to draw a reference current at an output of the reference transistor.
    Type: Application
    Filed: May 14, 2014
    Publication date: May 21, 2015
    Applicant: Dialog Semiconductor GmbH
    Inventors: Marcus Weis, Stephan Drebinger, Fabio Rigoni