Patents by Inventor Fabio Rigoni
Fabio Rigoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240079867Abstract: An apparatus may include an input pin\ and timing control circuitry coupled to the input pin. The timing control circuitry selectively executes one or more timing control functions based on a set of one or more hardware components coupled to the input pin. The set of one or more hardware components are disposed external to the apparatus. A configuration of the set of one or more hardware components determines which of one or more of the multiple timing control functions are enabled.Type: ApplicationFiled: September 6, 2022Publication date: March 7, 2024Inventors: Fabio Rigoni, Giuseppe Bernacchia
-
Patent number: 11239836Abstract: A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit. An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.Type: GrantFiled: April 21, 2020Date of Patent: February 1, 2022Assignee: Dialog Semiconductor (UK) LimitedInventors: Jerome Sanchez, Fabio Rigoni, Jan Grabinski, Ali Zahabi
-
Publication number: 20210175801Abstract: A DC/DC power converter and a method to convert an input voltage into an output voltage are presented. The power converter may have a first flying capacitor, a second flying capacitor, an inductor, and switching elements. It may control the switching elements such that the switching elements establish a first magnetizing current path from the input node, via the first flying capacitor, via the second flying capacitor, via the inductor, to the output node. The converter may control the switching elements to interrupt said first magnetizing current path after a pre-determined time interval. The converter may control the switching elements such that the switching elements establish a demagnetizing current path from a reference potential via the inductor to the output node. The converter may control the switching elements such that said demagnetizing current path is interrupted when a current through the inductor reaches a pre-determined threshold current value.Type: ApplicationFiled: December 5, 2019Publication date: June 10, 2021Inventors: Mihail Jefremow, Simon Stark, Holger Petersen, Fabio Rigoni, Stephan Drebinger, Alessandro Angeli
-
Patent number: 11011988Abstract: A DC/DC power converter and a method to convert an input voltage into an output voltage are presented. The power converter may have a first flying capacitor, a second flying capacitor, an inductor, and switching elements. It may control the switching elements such that the switching elements establish a first magnetizing current path from the input node, via the first flying capacitor, via the second flying capacitor, via the inductor, to the output node. The converter may control the switching elements to interrupt said first magnetizing current path after a pre-determined time interval. The converter may control the switching elements such that the switching elements establish a demagnetizing current path from a reference potential via the inductor to the output node. The converter may control the switching elements such that said demagnetizing current path is interrupted when a current through the inductor reaches a pre-determined threshold current value.Type: GrantFiled: December 5, 2019Date of Patent: May 18, 2021Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Simon Stark, Holger Petersen, Fabio Rigoni, Stephan Drebinger, Alessandro Angeli
-
Publication number: 20200252060Abstract: A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit. An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.Type: ApplicationFiled: April 21, 2020Publication date: August 6, 2020Inventors: Jerome Sanchez, Fabio Rigoni, Jan Gabrinski, Ali Zahabi
-
Patent number: 10666245Abstract: A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.Type: GrantFiled: July 19, 2018Date of Patent: May 26, 2020Assignee: Dialog Semiconductor (UK) LimitedInventors: Jerome Sanchez, Fabio Rigoni, Jan Grabinski, Ali Zahabi
-
Patent number: 10459470Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.Type: GrantFiled: May 11, 2018Date of Patent: October 29, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
-
Patent number: 10439421Abstract: A linear charger circuit and method for providing an output current at an output node is presented. The circuit contains a pass device connected between an input node and the output node, first and second replica devices connected in parallel to the pass device, with their control terminals coupled to a control terminal of the pass device. The first replica device is coupled to a first circuit path for determining whether current output by the linear charger circuit shall be terminated. The second replica device is coupled to a second circuit path for providing feedback for controlling the pass device, a control circuit coupled to the second circuit path for controlling the pass device based on a quantity indicative of a current flowing through the second circuit path, and a switching circuit coupled to the second circuit path.Type: GrantFiled: July 31, 2017Date of Patent: October 8, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Selcuk Talay, Fabio Rigoni
-
Patent number: 10331152Abstract: A circuit for generating an output voltage, and regulating the output voltage to a target voltage, is described. The circuit comprises a pass device coupled between an input voltage level and an output voltage level, an error amplifier stage configured to generate a first control voltage on the basis of a reference voltage and the output voltage, a buffer stage configured to generate a drive signal for the pass device on the basis of the first control voltage, and a tracking circuit configured to track a voltage across the pass device and to generate a second control voltage on the basis of the voltage across the pass device. The buffer stage comprises a variable resistance element, for limiting a current flowing through the buffer stage on the basis of the second control voltage.Type: GrantFiled: April 6, 2018Date of Patent: June 25, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni
-
Patent number: 10248145Abstract: A voltage regulator to provide a load current at an output node is presented. The voltage regulator has a pass transistor for providing the load current at the output node from an input node. The voltage regulator contains a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage at a gate of a drive transistor. The voltage regulator has voltage regulation means to set the drive voltage in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The driver stage has the drive transistor and a diode transistor, wherein the diode transistor forms a current mirror with the pass transistor. The driver stage has a current amplifier amplifies a drive current through the drive transistor to provide an amplified current through the diode transistor.Type: GrantFiled: February 21, 2018Date of Patent: April 2, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
-
Publication number: 20190036353Abstract: A linear charger circuit and method for providing an output current at an output node is presented. The circuit contains a pass device connected between an input node and the output node, first and second replica devices connected in parallel to the pass device, with their control terminals coupled to a control terminal of the pass device. The first replica device is coupled to a first circuit path for determining whether current output by the linear charger circuit shall be terminated. The second replica device is coupled to a second circuit path for providing feedback for controlling the pass device, a control circuit coupled to the second circuit path for controlling the pass device based on a quantity indicative of a current flowing through the second circuit path, and a switching circuit coupled to the second circuit path.Type: ApplicationFiled: July 31, 2017Publication date: January 31, 2019Inventors: Mihail Jefremow, Selcuk Talay, Fabio Rigoni
-
Publication number: 20190028095Abstract: A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.Type: ApplicationFiled: July 19, 2018Publication date: January 24, 2019Inventors: Jerome Sanchez, Fabio Rigoni, Jan Grabinski, Ali Zahabi
-
Patent number: 10152071Abstract: This application relates to a circuit for generating an output voltage and regulating the output voltage to a target voltage. The circuit includes a switchable voltage divider circuit configured to generate a feedback voltage that is a variable fraction of the output voltage, an error amplifier stage configured to generate a control voltage on the basis of a reference voltage and the variable fraction of the output voltage, a buffer stage configured to generate the output voltage on the basis of the control voltage, and a charge injection circuit configured to inject charge at an intermediate node between the error amplifier stage and the buffer stage to thereby modify the control voltage generated by the error amplifier stage. The application further relates to a method of operating such circuit.Type: GrantFiled: November 21, 2016Date of Patent: December 11, 2018Assignee: Dialog Semiconductor (UK) LimitedInventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
-
Publication number: 20180329440Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.Type: ApplicationFiled: May 11, 2018Publication date: November 15, 2018Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
-
Publication number: 20180292853Abstract: A circuit for generating an output voltage, and regulating the output voltage to a target voltage, is described. The circuit comprises a pass device coupled between an input voltage level and an output voltage level, an error amplifier stage configured to generate a first control voltage on the basis of a reference voltage and the output voltage, a buffer stage configured to generate a drive signal for the pass device on the basis of the first control voltage, and a tracking circuit configured to track a voltage across the pass device and to generate a second control voltage on the basis of the voltage across the pass device. The buffer stage comprises a variable resistance element, for limiting a current flowing through the buffer stage on the basis of the second control voltage.Type: ApplicationFiled: April 6, 2018Publication date: October 11, 2018Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni
-
Publication number: 20180239380Abstract: A voltage regulator to provide a load current at an output node is presented. The voltage regulator has a pass transistor for providing the load current at the output node from an input node. The voltage regulator contains a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage at a gate of a drive transistor. The voltage regulator has voltage regulation means to set the drive voltage in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The driver stage has the drive transistor and a diode transistor, wherein the diode transistor forms a current mirror with the pass transistor. The driver stage has a current amplifier amplifies a drive current through the drive transistor to provide an amplified current through the diode transistor.Type: ApplicationFiled: February 21, 2018Publication date: August 23, 2018Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
-
Patent number: 10048710Abstract: A voltage regulator which provides at an output node a load current at an output voltage is described. The voltage regulator comprises a pass transistor for providing the load current at the output node from an input node, and a driver stage configured to set the gate voltage of the pass transistor based on a drive current. The voltage regulator has voltage regulation means to set the drive current in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The voltage regulator has bypass regulation means to set the drive current in dependence of an indication of the gate-to-source voltage at the pass transistor and in dependence of a target voltage for the gate—to activate the voltage regulation means and/or the bypass regulation means. source voltage. The voltage regulator also comprises mode selection means.Type: GrantFiled: May 23, 2016Date of Patent: August 14, 2018Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Dan Ciomaga, Marcus Weis, Stephan Drebinger, Fabio Rigoni
-
Patent number: 10001795Abstract: A linear regulator is presented. It comprises a first amplifier stage, one of the inputs being coupled with the output of the linear regulator. It has an intermediate amplifier stage. The input of the intermediate amplifier stage is coupled to the output of the first amplifier stage. It has a driver stage having a pass device driven by the output of the driver stage. The output of the pass device provides the output of the linear regulator. The regulator has a voltage-to-current feedback circuit coupled with the driver stage and the output of the first amplifier stage for regulating the output resistance of the first amplifier stage depending on load conditions of the linear regulator. The voltage-to-current feedback circuit has a transistor and a current limitation circuit to limit the regulation of the output resistance of the first amplifier stage to low load conditions of the linear regulator.Type: GrantFiled: August 26, 2016Date of Patent: June 19, 2018Assignee: Dialog Semiconductor (UK) LimitedInventors: Mihail Jefremow, Dan Ciomaga, Qiao Yang, Stephan Drebinger, Fabio Rigoni
-
Publication number: 20170269619Abstract: This application relates to a circuit for generating an output voltage and regulating the output voltage to a target voltage. The circuit includes a switchable voltage divider circuit configured to generate a feedback voltage that is a variable fraction of the output voltage, an error amplifier stage configured to generate a control voltage on the basis of a reference voltage and the variable fraction of the output voltage, a buffer stage configured to generate the output voltage on the basis of the control voltage, and a charge injection circuit configured to inject charge at an intermediate node between the error amplifier stage and the buffer stage to thereby modify the control voltage generated by the error amplifier stage. The application further relates to a method of operating such circuit.Type: ApplicationFiled: November 21, 2016Publication date: September 21, 2017Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
-
Publication number: 20170205841Abstract: A voltage regulator which provides at an output node a load current at an output voltage is described. The voltage regulator comprises a pass transistor for providing the load current at the output node from an input node, and a driver stage configured to set the gate voltage of the pass transistor based on a drive current. The voltage regulator has voltage regulation means to set the drive current in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The voltage regulator has bypass regulation means to set the drive current in dependence of an indication of the gate-to-source voltage at the pass transistor and in dependence of a target voltage for the gate—to activate the voltage regulation means and/or the bypass regulation means. source voltage.Type: ApplicationFiled: May 23, 2016Publication date: July 20, 2017Inventors: Mihail Jefremow, Dan Ciomaga, Marcus Weis, Stephan Drebinger, Fabio Rigoni