Patents by Inventor Fabio Viola

Fabio Viola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220366245
    Abstract: A reinforcement learning method and system that selects actions to be performed by a reinforcement learning agent interacting with an environment. A causal model is implemented by a hindsight model neural network and trained using hindsight i.e. using future environment state trajectories. As the method and system does not have access to this future information when selecting an action, the hindsight model neural network is used to train a model neural network which is conditioned on data from current observations, which learns to predict an output of the hindsight model neural network.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 17, 2022
    Inventors: Arthur Clement Guez, Fabio Viola, Theophane Guillaume Weber, Lars Buesing, Nicolas Manfred Otto Heess
  • Patent number: 11074481
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 27, 2021
    Assignee: DeepMind Technologies Limited
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20200151515
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Patent number: 10572776
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 25, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20190266449
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 29, 2019
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil