Patents by Inventor Fabrice Axisa

Fabrice Axisa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9418927
    Abstract: A stretchable electronic device is disclosed. In one aspect, the device includes at least one combination of a stretchable electronic structure having a first Young's modulus and a rigid or flexible electronic structure having a second Young's modulus higher than the first Young's modulus. The stretchable electronic structure and the rigid or flexible electronic structure may be electrically connected to each other by a semi-transition structure having a third Young's modulus with a value in a range between the first and the second Young's modulus.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: August 16, 2016
    Assignees: IMEC, Universiteit Gent
    Inventors: Fabrice Axisa, Jan Vanfleteren, Frederick Bossuyt
  • Patent number: 9247648
    Abstract: A stretchable electronic device is disclosed. In one aspect, the device has a stretchable interconnection electrically connecting two electronic components. The stretchable interconnection includes an electrically conductive channel having a predetermined first geometry by which the channel is stretchable up to a given elastic limit and a first flexible supporting layer provided for supporting the electrically conductive channel and having a predetermined second geometry by which the first supporting layer is stretchable. The predetermined second geometry has a predetermined deviation from the predetermined first geometry chosen for restricting stretchability of the electrically conductive channel below its elastic limit.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 26, 2016
    Assignees: IMEC, Univesiteit Gent
    Inventors: Jan Vanfleteren, Frederick Bossuyt, Fabrice Axisa
  • Patent number: 8431828
    Abstract: A composite substrate is disclosed. In one aspect, the substrate has a stretchable and/or flexible material. The substrate may further have patterned features embedded in the stretchable and/or flexible material. The patterned features have one or more patterned conducting layers.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: April 30, 2013
    Assignees: IMEC, Universiteit Gent
    Inventors: Jan Vanfleteren, Dominique Brosteaux, Fabrice Axisa
  • Patent number: 8207473
    Abstract: A method for manufacturing a stretchable electronic device is disclosed. In one aspect, the device comprises at least one electrically conductive channel connecting at least two components of the device. The method comprises forming the channel by laser-cutting a flexible substrate into a predetermined geometric shape.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 26, 2012
    Assignees: IMEC, Universiteit Gent
    Inventors: Fabrice Axisa, Jan Vanfleteren, Thomas Vervust
  • Patent number: 8182872
    Abstract: A method is provided for fabricating a porous elastomer, the method comprising the steps of: providing a predetermined amount of a liquid elastomer and a predetermined amount of a porogen; mixing the liquid elastomer and the porogen in vacuum until a homogenous emulsion without phase separation is formed; curing the homogenous emulsion until polymerizations of the emulsion is reached, thereby forming a cured emulsion; and removing the porogen from the cured emulsion. The method can advantageously be used for forming biocompatible porous elastomers and biocompatible porous membranes.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 22, 2012
    Assignees: IMEC, Universiteit Gent
    Inventors: Fabrice Axisa, Pritesh Dagur, Jan Vanfleteren
  • Publication number: 20120052268
    Abstract: A stretchable electronic device is disclosed. In one aspect, the device includes at least one combination of a stretchable electronic structure having a first young modulus and a rigid or flexible electronic structure having a second young modulus higher than the first young modulus. The stretchable electronic structure and the rigid or flexible electronic structure may be electrically connected to each other by a semi-transition structure having a third young modulus with a value in a range between the first and the second young modulus.
    Type: Application
    Filed: July 28, 2011
    Publication date: March 1, 2012
    Applicants: Universiteit Gent, IMEC
    Inventors: Fabrice Axisa, Jan Vanfleteren, Frederick Bossuyt
  • Publication number: 20120051005
    Abstract: A stretchable electronic device is disclosed. In one aspect, the device has a stretchable interconnection electrically connecting two electronic components. The stretchable interconnection includes an electrically conductive channel having a predetermined first geometry by which the channel is stretchable up to a given elastic limit and a first flexible supporting layer provided for supporting the electrically conductive channel and having a predetermined second geometry by which the first supporting layer is stretchable. The predetermined second geometry has a predetermined deviation from the predetermined first geometry chosen for restricting stretchability of the electrically conductive channel below its elastic limit.
    Type: Application
    Filed: July 28, 2011
    Publication date: March 1, 2012
    Applicants: Universiteit Gent, IMEC
    Inventors: Jan Vanfleteren, Frederick Bossuyt, Fabrice Axisa
  • Publication number: 20100075056
    Abstract: A method is provided for fabricating a porous elastomer, the method comprising the steps of: providing a predetermined amount of a liquid elastomer and a predetermined amount of a porogen; mixing the liquid elastomer and the porogen in vacuum until a homogenous emulsion without phase separation is formed; curing the homogenous emulsion until polymerizations of the emulsion is reached, thereby forming a cured emulsion; and removing the porogen from the cured emulsion. The method can advantageously be used for forming biocompatible porous elastomers and biocompatible porous membranes.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 25, 2010
    Applicant: IMEC
    Inventors: Fabrice Axisa, Pritesh Dagur, Jan Vanfleteren
  • Publication number: 20090317639
    Abstract: A method for manufacturing a stretchable electronic device is disclosed. In one aspect, the device comprises at least one electrically conductive channel connecting at least two components of the device. The method comprises forming the channel by laser-cutting a flexible substrate into a predetermined geometric shape.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Universiteit Gent
    Inventors: Fabrice Axisa, Jan Vanfleteren, Thomas Vervust
  • Publication number: 20090107704
    Abstract: A composite substrate is disclosed. In one aspect, the substrate has a stretchable and/or flexible material. The substrate may further have patterned features embedded in the stretchable and/or flexible material. The patterned features have one or more patterned conducting layers.
    Type: Application
    Filed: January 5, 2009
    Publication date: April 30, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Universiteit Gent
    Inventors: Jan Vanfleteren, Dominique Brosteaux, Fabrice Axisa
  • Patent number: 7487587
    Abstract: Methods of producing a composite substrate and devices made by the methods are disclosed. One of the methods comprises providing a flexible sacrificial layer, producing one or more patterned conducting layers on the flexible sacrificial layer, bending the sacrificial layer into a predetermined shape, providing a stretchable and/or flexible material on top of and in between features of the one or more patterned layers.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 10, 2009
    Assignees: Interuniversitair Microelektronica Centrum vzw (IMEC), Universiteit Gent
    Inventors: Jan Vanfleteren, Dominique Brosteaux, Fabrice Axisa
  • Publication number: 20060231288
    Abstract: Methods of producing a composite substrate and devices made by the methods are disclosed. One of the methods comprises providing a flexible sacrificial layer, producing one or more patterned conducting layers on the flexible sacrificial layer, bending the sacrificial layer into a predetermined shape, providing a stretchable and/or flexible material on top of and in between features of the one or more patterned layers.
    Type: Application
    Filed: March 22, 2006
    Publication date: October 19, 2006
    Inventors: Jan Vanfleteren, Dominique Brosteaux, Fabrice Axisa