Patents by Inventor Fabrice Geiger

Fabrice Geiger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6875558
    Abstract: A method for forming a trench isolation structure on a substrate. The method includes applying a pad oxide layer (226) on the substrate (224), applying a polysilicon layer (228) over the pad oxide layer, and applying a CVD anti-reflective coating (ARC) (230) over the polysilicon layer. A photoresist is formed on the CVD ARC and a trenched is etched at a desired location. One embodiment provides a method for depositing a trench oxide filling layer (300) on the trenched substrate utilizing the surface sensitivity of dielectric materials such as O3/TEOS to achieve a substantially self-planarized dielectric layer. Prior problems with porous trench fill, particular near trench corners, are obviated by use of the polysilicon layer. After deposition, an oxidizing anneal can be performed to grow a thermal oxide (307) at the trench surfaces and densify the dielectric material. A chemical mechanical polish can be used to remove the excess oxide material, including the porous regions.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: April 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Frederic Gaillard, Fabrice Geiger, Ellie Y. Yieh
  • Patent number: 6753270
    Abstract: The present invention relates to a method for providing a dielectric film having a low dielectric constant that is particularly useful as an intermetal dielectric layer. The method of the present invention deposits a porous oxide gap fill layer from a process gas of ozone and TEOS. The gap fill layer is deposited over a surface sensitive lining layer (as opposed to a non-surface sensitive layer as is commonly done in the industry) using deposition conditions that maximize the amount of carbon that is incorporated into the gap fill layer and result in a porous silicon oxide film. A typical SACVD ozone/TEOS gap fill layer has a carbon content of about 2-3 atomic percent (at. %). An SACVD ozone/TEOS gap fill layer deposited according to the present, however, has a carbon content of at least 5 at. % and preferably has a carbon content of between about 7-8 at. %.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: June 22, 2004
    Assignee: Applied Materials Inc.
    Inventors: Fabrice Geiger, Frederic Gaillard
  • Patent number: 6733955
    Abstract: A method for depositing a trench oxide filling layer (300) on a trenched substrate (224) utilizes the surface sensitivity of dielectric materials such as O3/TEOS. Such materials have different desposition rates on differently constituted surfaces at different levels on the trenched substrate (224) so that the surface profile of the deposited layer (300) is substantially self-planarized. Depositing the dielectric material on a silicon trench (228) produces a high quality filling layer, and cleaning the trench (228) prior to desposition can increase the quality. After desposition, an oxidizing anneal can be performed to grow a thermal oxide (308) at the trench surfaces and densify the dielectric material. A chemical mechanical polish can be used to remove the excess oxide material above an etch stop layer (226) of the substrate (224) which can be formed of LPCVD nitride or CVD anti-reflective coating.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 11, 2004
    Assignee: Applied Materials Inc.
    Inventors: Fabrice Geiger, Frederic Gaillard
  • Patent number: 6703321
    Abstract: The present invention provides exemplary methods, apparatus and systems for planarizing an insulating layer, such as a borophosphosilicate glass (BPSG) layer, deposited over a substrate. In one embodiment, a substrate (140) is inserted into a substrate processing chamber and a BPSG layer (142) is deposited thereover. The BPSG layer has an upper surface that is generally non-planar, due in part to the underlying nonplanar substrate surface (130). The substrate is exposed to an ultraviolet (UV) light (160) at conditions sufficient to cause a reflow of the BPSG layer so that the BPSG layer upper surface (150) is generally planar. In this manner, photonic energy is used to promote BPSG reflow, thereby reducing the thermal budget requirements for such a process.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: March 9, 2004
    Assignee: Applied Materials Inc.
    Inventors: Fabrice Geiger, Frederic Gaillard
  • Patent number: 6602806
    Abstract: A method for providing a dielectric film having a low dielectric constant. The deposited film is particularly useful as an intermetal or premetal dielectric layer in an integrated circuit. The low dielectric constant film is a carbon-doped silicon oxide layer deposited from a thermal, as opposed to plasma, CVD process. The layer is deposited from a process gas of ozone and an organosilane precursor having at least one silicon-carbon (Si—C) bond. During the deposition process the wafer is heated to a temperature less than 250° C. and preferably to a temperature between 100-200° C. Enhancements to the process include adding Boron and/or Phosphorus dopants, two step deposition, and capping the post cured layer.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: August 5, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Fabrice Geiger, Frederic Gaillard, Ellie Yieh, Tian H. Lim
  • Publication number: 20020006729
    Abstract: The present invention provides exemplary methods, apparatus and systems for planarizing an insulating layer, such as a borophosphosilicate glass (BPSG) layer, deposited over a substrate. In one embodiment, a substrate (140) is inserted into a substrate processing chamber and a BPSG layer (142) is deposited thereover. The BPSG layer has an upper surface that is generally non-planar, due in part to the underlying nonplanar substrate surface (130). The substrate is exposed to an ultraviolet (UV) light (160) at conditions sufficient to cause a reflow of the BPSG layer so that the BPSG layer upper surface (150) is generally planar. In this manner, photonic energy is used to promote BPSG reflow, thereby reducing the thermal budget requirements for such a process.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 17, 2002
    Inventors: Fabrice Geiger, Frederic Gaillard