Patents by Inventor Fadhel M. Ghannouchi

Fadhel M. Ghannouchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190165733
    Abstract: An amplifier comprising a current-biased active device, a voltage-biased active device, the voltage-biased active device and the current-biased active device are connected in series, to form a cascade of active devices, and an input terminal and an output terminal, the cascade of active devices connected between the input terminal and the output terminal, having an output terminal for driving a load impedance with an output signal in response to an input signal applied to the input terminal.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 30, 2019
    Inventor: Fadhel M. Ghannouchi
  • Patent number: 10122334
    Abstract: An amplifier comprising an active device having an output terminal for driving a load impedance in response to a signal applied to an input terminal and a current source connected to the active device to provide a bias to the active device wherein when the active device is operated an output power of the active device increases with increasing load impedance.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: November 6, 2018
    Inventor: Fadhel M Ghannouchi
  • Publication number: 20180054225
    Abstract: A concurrent multi-band linearized transmitter (CMLT) has a concurrent d a multi-band predistortion block (CDMPB) and a concurrent multi-band transmitter (CMT) connected to the CDMPB, The CDMPB can have a plurality of digital baseband signal predistorter blocks (DBSPBs), an analyzing and modeling (A&M) stage, and a signal observation feedback loop. Each DBSPB can have a plurality of inputs, each corresponding to a single frequency band of the multi-band input signal, and its output corresponding to a single frequency band; each output connect corresponding to an input of the CMLT. The A&M stage can have a plurality of outputs connected to and updating the parameters of the DBSPBs, and a plurality of inputs connected to either both outputs of the signal observation loop or the output of the subsampling loop and to outputs of the DBSPBs. The A&M stage can perform signals' time alignment, reconstruction of signals and compute parameters of DBSPBs.
    Type: Application
    Filed: May 1, 2017
    Publication date: February 22, 2018
    Inventor: Fadhel M. GHANNOUCHI
  • Publication number: 20170214438
    Abstract: The present invention relates to a method for multiple-input multiple-output impairment pre-compensation comprising: receiving a multiple-input signal; generating a pre-distorted multiple-input signal from the received multiple-input signal; generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter; estimating impairments generated by the multiple-input and multiple-output transmitter; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments. The present invention also relates to a pre-compensator for use with a multiple-input and multiple-output transmitter, comprising: a multiple-input for receiving a multiple-input signal; a matrix of pre-processing cells for generating a pre-distorted multiple-input signal from the received multiple-input signal; and a multiple-output for feeding the pre-distorted multiple-input signal to the multiple-input and multiple-output transmitter.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventor: Fadhel M. Ghannouchi
  • Publication number: 20170135058
    Abstract: A method for distortion compensation in a transmission link comprising obtaining information of an amplitude distribution of a signal prior to being transmitted by a transmitter, receiving the transmitted signal at a receiver and determining a received signal amplitude distribution, comparing the received signal amplitude distribution to the amplitude distribution of the signal prior to transmission and using results of the comparison to estimate the AM/AM non-linearity in the transmitter.
    Type: Application
    Filed: October 3, 2016
    Publication date: May 11, 2017
    Inventors: Fadhel M. Ghannouchi, Mehdi VEJDANIAMIRI, Mohamed Helaoui
  • Patent number: 9641204
    Abstract: A concurrent multi-band linearized transmitter (CMLT) has a concurrent digital multi-band predistortion block (CDMPB) and a concurrent multi-band transmitter (CMT) connected to the CDMPB. The CDMPB can have a plurality of digital baseband signal predistorter blocks (DBSPBs), an analyzing and modeling (A&M) stage, and a signal observation feedback loop. Each DBSPB can have a plurality of inputs, each corresponding to a single frequency band of the multi-band input signal, and its output corresponding to a single frequency band; each output connect corresponding to an input of the CMLT. The A&M stage can have a plurality of outputs connected to and updating the parameters of the DBSPBs, and a plurality of inputs connected to either both outputs of the signal observation loop or the output of the subsampling loop and to outputs of the DBSPBs. The A&M stage can perform signals' time alignment, reconstruction of signals and compute parameters of DBSPBs.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: May 2, 2017
    Inventor: Fadhel M. Ghannouchi
  • Patent number: 9621236
    Abstract: The present invention relates to a method for multiple-input multiple-output impairment pre-compensation comprising: receiving a multiple-input signal; generating a pre-distorted multiple-input signal from the received multiple-input signal; generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter; estimating impairments generated by the multiple-input and multiple-output transmitter; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments. The present invention also relates to a pre-compensator for use with a multiple-input and multiple-output transmitter, comprising: a multiple-input for receiving a multiple-input signal; a matrix of pre-processing cells for generating a pre-distorted multiple-input signal from the received multiple-input signal; and a multiple-output for feeding the pre-distorted multiple-input signal to the multiple-input and multiple-output transmitter.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 11, 2017
    Inventor: Fadhel M. Ghannouchi
  • Publication number: 20170063316
    Abstract: An amplifier comprising an active device having an output terminal for driving a load impedance in response to a signal applied to an input terminal and a current source connected to the active device to provide a bias to the active device wherein when the active device is operated an output power of the active device increases with increasing load impedance.
    Type: Application
    Filed: August 2, 2016
    Publication date: March 2, 2017
    Inventor: Fadhel M. Ghannouchi
  • Patent number: 9461675
    Abstract: A method for distortion compensation in a transmission link comprising obtaining information of an amplitude distribution of a signal prior to being transmitted by a transmitter, receiving the transmitted signal at a receiver and determining a received signal amplitude distribution, comparing the received signal amplitude distribution to the amplitude distribution of the signal prior to transmission and using results of the comparison to estimate the AM/AM non-linearity in the transmitter.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: October 4, 2016
    Inventors: Fadhel M. Ghannouchi, Mehdi Vejdaniamiri, Mohamed Helaoui
  • Publication number: 20150244402
    Abstract: A method for distortion compensation in a transmission link comprising obtaining information of an amplitude distribution of a signal prior to being transmitted by a transmitter, receiving the transmitted signal at a receiver and determining a received signal amplitude distribution, comparing the received signal amplitude distribution to the amplitude distribution of the signal prior to transmission and using results of the comparison to estimate the AM/AM non-linearity in the transmitter.
    Type: Application
    Filed: February 25, 2015
    Publication date: August 27, 2015
    Inventors: Fadhel M. Ghannouchi, Mehdi VEJDANIAMIRI, Mohamed Helaoui
  • Publication number: 20150236731
    Abstract: A concurrent multi-band linearized transmitter (CMLT) has a concurrent digital multi-band predistortion block (CDMPB) and a concurrent multi-band transmitter (CMT) connected to the CDMPB. The CDMPB can have a plurality of digital baseband signal predistorter blocks (DBSPBs), an analyzing and modeling (A&M) stage, and a signal observation feedback loop. Each DBSPB can have a plurality of inputs, each corresponding to a single frequency band of the multi-band input signal, and its output corresponding to a single frequency band; each output connect corresponding to an input of the CMLT. The A&M stage can have a plurality of outputs connected to and updating the parameters of the DBSPBs, and a plurality of inputs connected to either both outputs of the signal observation loop or the output of the subsampling loop and to outputs of the DBSPBs. The A&M stage can perform signals' time alignment, reconstruction of signals and compute parameters of DBSPBs.
    Type: Application
    Filed: August 25, 2014
    Publication date: August 20, 2015
    Inventor: Fadhel M. GHANNOUCHI
  • Patent number: 9071496
    Abstract: The present disclosure is concerned with a digital transmitter using Delta-Sigma modulators (DMSs) that uses an up-sampler and modulator block that follows the DSMs to generate the RF equivalent of the baseband signal to be transmitted. The up-sampler and modulator block is simple to implement and contains only one or a few multiplexers implemented in high speed logic technology.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 30, 2015
    Inventor: Fadhel M. Ghannouchi
  • Publication number: 20150010100
    Abstract: The present invention relates to a method for multiple-input multiple-output impairment pre-compensation comprising: receiving a multiple-input signal; generating a pre-distorted multiple-input signal from the received multiple-input signal; generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter; estimating impairments generated by the multiple-input and multiple-output transmitter; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments. The present invention also relates to a pre-compensator for use with a multiple-input and multiple-output transmitter, comprising: a multiple-input for receiving a multiple-input signal; a matrix of pre-processing cells for generating a pre-distorted multiple-input signal from the received multiple-input signal; and a multiple-output for feeding the pre-distorted multiple-input signal to the multiple-input and multiple-output transmitter.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 8, 2015
    Inventor: Fadhel M. GHANNOUCHI
  • Publication number: 20140301503
    Abstract: The present invention relates to a method for multiple-input multiple-output impairment pre-compensation comprising: receiving a multiple-input signal; generating a pre-distorted multiple-input signal from the received multiple-input signal; generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter; estimating impairments generated by the multiple-input and multiple-output transmitter; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments. The present invention also relates to a pre-compensator for use with a multiple-input and multiple-output transmitter, comprising: a multiple-input for receiving a multiple-input signal; a matrix of pre-processing cells for generating a pre-distorted multiple-input signal from the received multiple-input signal; and a multiple-output for feeding the pre-distorted multiple-input signal to the multiple-input and multiple-output transmitter.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 9, 2014
    Inventor: Fadhel M. Ghannouchi
  • Patent number: 8841922
    Abstract: An enhanced loop in a passive tuner consists of an extremely low loss coupler and a high directivity circulator. In the case of source reflection factor synthesis, a passive loop generates an additional incident traveling wave. This wave, added to the primary incident traveling wave, augments the traveling wave and thus increases the magnitude of the synthesized reflection factor at the source port of a device, such as a transistor. In the case of load reflection factor synthesis, the passive loop augments the initial reflected traveling wave by pumping an additional traveling wave. This additional traveling wave helps in synthesizing a higher load reflection factor at the load port. This architecture is capable of high reflection factor synthesis that enables load synthesis even on the border of the Smith chart. There is no problem of instability with the architecture of the present invention.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: September 23, 2014
    Inventors: Fadhel M. Ghannouchi, Souheil Ben Smida, Mohammad Shabi Hashmi, Mohamed Helaoui
  • Patent number: 8837629
    Abstract: An extended bandwidth digital Doherty transmitter includes a baseband signal processing block including a digital predistortion unit. It also includes a digital signal distribution unit and a digital phase alignment unit, a signal up-conversion block, an RF power amplification block including the carrier amplifier and one or two peaking amplifiers; and an RF Doherty combining network. In another aspect, a digital Doherty transmitter includes a baseband signal block including a digital predistortion unit, a digital signal distribution unit and an adaptive digital phase alignment unit. In this aspect a signal up-conversion block includes three digital-to-analog converters (DACs) and a tri-channel up-converter or three single-channel up-converters. There is also an RF power amplification block including the carrier amplifier and two peaking amplifiers, and an RF Doherty combining network which includes quarter wavelength impedance transformers.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 16, 2014
    Inventors: Fadhel M Ghannouchi, Ramzi Darraji
  • Publication number: 20140211886
    Abstract: The present disclosure is concerned with a digital transmitter using Delta-Sigma modulators (DMSs) that uses an up-sampler and modulator block that follows the DSMs to generate the RF equivalent of the baseband signal to be transmitted. The up-sampler and modulator block is simple to implement and contains only one or a few multiplexers implemented in high speed logic technology.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Inventor: Fadhel M. GHANNOUCHI
  • Patent number: 8767857
    Abstract: The present invention relates to a method for multiple-input multiple-output impairment pre-compensation comprising: receiving a multiple-input signal; generating a pre-distorted multiple-input signal from the received multiple-input signal; generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter; estimating impairments generated by the multiple-input and multiple-output transmitter; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments. The present invention also relates to a pre-compensator for use with a multiple-input and multiple-output transmitter, comprising: a multiple-input for receiving a multiple-input signal; a matrix of pre-processing cells for generating a pre-distorted multiple-input signal from the received multiple-input signal; and a multiple-output for feeding the pre-distorted multiple-input signal to the multiple-input and multiple-output transmitter.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: July 1, 2014
    Inventors: Seyed Aidin Bassam, Fadhel M. Ghannouchi, Mohamed Helaoui
  • Patent number: 8724733
    Abstract: The present disclosure is concerned with a digital transmitter using Delta-Sigma modulators (DMSs) that uses an up-sampler and modulator block that follows the DSMs to generate the RF equivalent of the baseband signal to be transmitted. The up-sampler and modulator block is simple to implement and contains only one or a few multiplexers implemented in high speed logic technology.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 13, 2014
    Inventors: Fadhel M. Ghannouchi, Mohamed Helaoui, Safar Hatami, Renato Negra
  • Publication number: 20110273187
    Abstract: An enhanced loop in a passive tuner consists of an extremely low loss coupler and a high directivity circulator. In the case of source reflection factor synthesis, a passive loop generates an additional incident traveling wave. This wave, added to the primary incident traveling wave, augments the traveling wave and thus increases the magnitude of the synthesized reflection factor at the source port of a device, such as a transistor. In the case of load reflection factor synthesis, the passive loop augments the initial reflected traveling wave by pumping an additional traveling wave. This additional traveling wave helps in synthesizing a higher load reflection factor at the load port. This architecture is capable of high reflection factor synthesis that enables load synthesis even on the border of the Smith chart. There is no problem of instability with the architecture of the present invention.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 10, 2011
    Inventors: FADHEL M. GHANNOUCHI, Souheil Ben Smida, Mohammad Shabi Hashmi, Mohamed Helaoui