Patents by Inventor Faiz Pourarian
Faiz Pourarian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9663728Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: GrantFiled: October 28, 2014Date of Patent: May 30, 2017Assignee: EXXONMOBILE RESEARCH AND ENGINEERING COMPANYInventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
-
Publication number: 20150045600Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: ApplicationFiled: October 28, 2014Publication date: February 12, 2015Applicant: ExxonMobil Research and Engineering CompanyInventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
-
Patent number: 8618010Abstract: The present invention relates to new processes for regenerating oxidized interstitial metal hydride containing catalysts prior to the use of such catalysts in a hydroprocessing process. Interstitial metal hydride containing catalysts are easily oxidized in the environment and once oxidized, the hydroprocessing activity of the interstitial metal hydrides is most often severely diminished and this lost activity due to oxidization of the iMeH is not susceptible to recovery under hydroprocessing conditions. As a result, these catalysts in the present art require considerable special handling in inert environments all through processes from fabrication, shipping, loading, use, and maintenance of the catalyst systems to protect the activity of the interstitial metal hydride components.Type: GrantFiled: November 17, 2010Date of Patent: December 31, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Heather A. Elsen, Patricia A. Bielenberg
-
Patent number: 8039652Abstract: Transesterification, esterification, and esterification-transesterification (both one-step and two-step) for producing biofuels. The process may be enhanced by one or more of the following: 1) applying microwave or RF energy; 2) passing reactants over a heterogeneous catalyst at sufficiently high velocity to achieve high shear conditions; 3) emulsifying reactants with a homogeneous catalyst; or 4) maintaining the reaction at a pressure at or above autogeneous pressure. Enhanced processes using one or more of these steps can result in higher process rates, higher conversion levels, or both.Type: GrantFiled: April 14, 2010Date of Patent: October 18, 2011Assignee: Carnegie Mellon UniversityInventors: Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Faiz Pourarian
-
Publication number: 20110119990Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHYInventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
-
Publication number: 20110119991Abstract: The present invention relates to new processes for regenerating oxidized interstitial metal hydride containing catalysts prior to the use of such catalysts in a hydroprocessing process. Interstitial metal hydride containing catalysts are easily oxidized in the environment and once oxidized, the hydroprocessing activity of the interstitial metal hydrides is most often severely diminished and this lost activity due to oxidization of the iMeH is not susceptible to recovery under hydroprocessing conditions. As a result, these catalysts in the present art require considerable special handling in inert environments all through processes from fabrication, shipping, loading, use, and maintenance of the catalyst systems to protect the activity of the interstitial metal hydride components.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Heather A. Elsen, Patricia A. Bielenberg, Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20110119993Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst and hydrogen at process conditions of at least 400 psig pressure and temperatures of at least 200° C. These processes use interstitial metal hydrides that possess significant hydrogen capacities and high hydrogen kinetics rate properties. The catalysts and processes of the present invention may be used with or without radio frequency or microwave energy and are preferably run under conditions of high hydrogen partial pressure above about 350 psia. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams as compared to processes of the prior art operated under similar conditions.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20110119992Abstract: The present invention relates to novel interstitial metal hydrides and catalyst containing interstitial metal hydrides that are resistant to oxidation and resultant loss of catalytic activity. The processes of the present invention include use of these improved, oxidation resistant interstitial metal hydride compositions for improved overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Gordon F. Stuntz, Jonathan M. McConnachie, Heather A. Elsen, Patricia A. Bielenberg
-
Publication number: 20100264015Abstract: Transesterification, esterification, and esterification-transesterification (both one-step and two-step) for producing biofuels. The process may be enhanced by one or more of the following: 1) applying microwave or RF energy; 2) passing reactants over a heterogeneous catalyst at sufficiently high velocity to achieve high shear conditions; 3) emulsifying reactants with a homogeneous catalyst; or 4) maintaining the reaction at a pressure at or above autogeneous pressure. Enhanced processes using one or more of these steps can result in higher process rates, higher conversion levels, or both.Type: ApplicationFiled: April 14, 2010Publication date: October 21, 2010Inventors: Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Faiz Pourarian
-
Publication number: 20100089741Abstract: A method is provided for the production of biofuels. The method includes contacting at least one of a plant oil, an animal oil and a mixture thereof with a catalyst including an acid or solid acid, thereby producing a catalyst-oil mixture. RF or microwave energy is applied to at least one of the catalyst, the plant oil, the animal oil, the mixture, and the catalyst-oil mixture to produce the biofuel. The process can be adjusted to produce gasoline, kerosene, jet fuel, or diesel range middle distillate products.Type: ApplicationFiled: October 15, 2009Publication date: April 15, 2010Inventors: Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Faiz Pourarian, Richard C. Jackson
-
Patent number: 7625832Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.Type: GrantFiled: December 5, 2006Date of Patent: December 1, 2009Assignee: Carnegie Mellon UniversityInventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20080302703Abstract: A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.Type: ApplicationFiled: June 11, 2008Publication date: December 11, 2008Inventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Patent number: 7387712Abstract: A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.Type: GrantFiled: October 17, 2002Date of Patent: June 17, 2008Assignee: Carnegie Mellon UniversityInventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20070087933Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.Type: ApplicationFiled: December 5, 2006Publication date: April 19, 2007Applicant: CARNEGIE MELLON UNIVERSITYInventors: David Purta, Marc Portnoff, Faiz Pourarian, Margaret Nasta, Jingfeng Zhang
-
Patent number: 7157401Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.Type: GrantFiled: October 17, 2002Date of Patent: January 2, 2007Assignee: Carnegie Mellon UniversityInventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20050274065Abstract: Transesterification, esterification, and esterification-transesterification (both one-step and two-step) for producing biofuels. The process may be enhanced by one or more of the following: 1) applying microwave or RF energy; 2) passing reactants over a heterogeneous catalyst at sufficiently high velocity to achieve high shear conditions; 3) emulsifying reactants with a homogeneous catalyst; or 4) maintaining the reaction at a pressure at or above autogeneous pressure. Enhanced processes using one or more of these steps can result in higher process rates, higher conversion levels, or both.Type: ApplicationFiled: June 15, 2004Publication date: December 15, 2005Applicant: Carnegie Mellon UniversityInventors: Marc Portnoff, David Purta, Margaret Nasta, Jingfeng Zhang, Faiz Pourarian
-
Publication number: 20040077485Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.Type: ApplicationFiled: October 17, 2002Publication date: April 22, 2004Applicant: Carnegie Mellon UniversityInventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20040074760Abstract: A method is provided for the production of biofuels. The method includes contacting at least one of a plant oil, an animal oil and a mixture thereof with a catalyst including an acid or solid acid, thereby producing a catalyst-oil mixture. RF or microwave energy is applied to at least one of the catalyst, the plant oil, the animal oil, the mixture, and the catalyst-oil mixture to produce the biofuel. The process can be adjusted to produce gasoline, kerosene, jet fuel, or diesel range middle distillate products.Type: ApplicationFiled: October 17, 2002Publication date: April 22, 2004Applicant: Carnegie Mellon UniversityInventors: Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Faiz Pourarian, Richard C. Jackson
-
Publication number: 20040074759Abstract: A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.Type: ApplicationFiled: October 17, 2002Publication date: April 22, 2004Applicant: Carnegie Mellon UniversityInventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
-
Patent number: 5525435Abstract: A hydrogen storage material for use in various hydrogen absorber devices such as electrochemical cells, hydrogen separator devices, temperature sensors and the like, having the formula:R.sub.6-x R'.sub.x T.sub.11-y T'.sub.y X.sub.3-z X'.sub.zwhere R and R' are a rare earth metal; T is cobalt; T' is Ni, Fe, Mn or Cr; X is Ga; X' is Al, Si, Sn, Ge, Cr, In or Mo; x is from 0.0 to 3.6; y is from 0.0 to 9.0; and z is from 0 to 2.Type: GrantFiled: July 11, 1994Date of Patent: June 11, 1996Assignee: Eveready Battery Company, Inc.Inventor: Faiz Pourarian