Patents by Inventor Fan-Jie LIN

Fan-Jie LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11807746
    Abstract: An impact-resistant polystyrene resin includes a continuous phase and a plurality of particles dispersed in the continuous phase. The average particle size of the particles is about 0.1 to 4.0 ?m, and the average distance between the particles is about 0.3 to 5.0 ?m. The impact-resistant polystyrene resin is made from a polystyrene composition including a polystyrene plastic, a styrene block copolymer, a processing aid, and an antioxidant.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 7, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuan-Yeh Huang, Jin-An Wu, Fu-Ming Chien, Yun-Chen Chang, Fan-Jie Lin
  • Publication number: 20230042674
    Abstract: An impact-resistant polystyrene resin includes a continuous phase and a plurality of particles dispersed in the continuous phase. The average particle size of the particles is about 0.1 to 4.0 µm, and the average distance between the particles is about 0.3 to 5.0 µm. The impact-resistant polystyrene resin is made from a polystyrene composition including a polystyrene plastic, a styrene block copolymer, a processing aid, and an antioxidant.
    Type: Application
    Filed: December 22, 2021
    Publication date: February 9, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuan-Yeh HUANG, Jin-An WU, Fu-Ming CHIEN, Yun-Chen CHANG, Fan-Jie LIN
  • Patent number: 11458677
    Abstract: A selective laser sintering composition and a selective laser sintering 3D printing method employing the same are provided. The selective laser sintering composition includes a nanoscale inorganic powder and a thermoplastic vulcanizate powder. The temperature difference (?T) between the onset temperature for melting the thermoplastic vulcanizate powder and the onset temperature at which the thermoplastic crystallizes vulcanizate powder is greater than or equal to 10° C. The thermoplastic vulcanizate powder includes a thermoplastic and a crosslinked polymer. The temperature difference (?T) between the onset temperature for melting the thermoplastic and the onset temperature at which the thermoplastic crystallizes is greater than or equal to 10° C. , and the weight ratio of the thermoplastic to the crosslinked polymer is from 1:1 to 1:4.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 4, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-An Wu, Chih-Hung Lee, Fan-Jie Lin, Fu-Ming Chien, Chien-Ming Chen
  • Publication number: 20220204752
    Abstract: A biodegradable polyester and a method for preparing a biodegradable polyester are provided. The biodegradable polyester is a product of a reactant (A) and a reactant (B) via polycondensation. The reactant (A) is a product of a reactant (C) and a reactant (D) via an esterification reaction. The reactant (B) is at least one epoxy resin with a secondary hydroxyl functional group. The reactant (C) is at least one diol, and the reactant (D) is at least one dicarboxylic acid, at least one acid anhydride, or a combination thereof.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-An WU, Jen-Chun CHIU, Sheng-Lung CHANG, Fan-Jie LIN, Yun-Chen CHANG
  • Patent number: 11365311
    Abstract: A flexible transparent material is provided. The flexible transparent material includes a thermoplastic and a plurality of micelles dispersed in the thermoplastic. Each micelle includes a plurality of cross-linked rubber particles and a swelling liquid. The weight ratio of the thermoplastic to the total weight of the cross-linked rubber particles is from 1:5 to 4:5. The weight ratio of the swelling liquid to the total weight of the cross-linked rubber particles is from 1:5 to 2:1.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: June 21, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-An Wu, Bing-Jyun Zeng, Fan-Jie Lin, Fu-Ming Chien
  • Publication number: 20210198461
    Abstract: A flexible transparent material is provided. The flexible transparent material includes a thermoplastic and a plurality of micelles dispersed in the thermoplastic. Each micelle includes a plurality of cross-linked rubber particles and a swelling liquid. The weight ratio of the thermoplastic to the total weight of the cross-linked rubber particles is from 1:5 to 4:5. The weight ratio of the swelling liquid to the total weight of the cross-linked rubber particles is from 1:5 to 2:1.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-An WU, Bing-Jyun ZENG, Fan-Jie LIN, Fu-Ming CHIEN
  • Publication number: 20210197450
    Abstract: A selective laser sintering composition and a selective laser sintering 3D printing method employing the same are provided. The selective laser sintering composition includes a nanoscale inorganic powder and a thermoplastic vulcanizate powder. The temperature difference (?T) between the onset temperature for melting the thermoplastic vulcanizate powder and the onset temperature at which the thermoplastic crystallizes vulcanizate powder is greater than or equal to 10° C. The thermoplastic vulcanizate powder includes a thermoplastic and a crosslinked polymer. The temperature difference (?T) between the onset temperature for melting the thermoplastic and the onset temperature at which the thermoplastic crystallizes is greater than or equal to 10° C. , and the weight ratio of the thermoplastic to the crosslinked polymer is from 1:1 to 1:4.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-An WU, Chih-Hung LEE, Fan-Jie LIN, Fu-Ming CHIEN, Chien-Ming CHEN
  • Patent number: 10738180
    Abstract: A thermoplastic vulcanizate is provided, including 10-50 parts by weight of a nylon plastic and 50-90 parts by weight of a cross-linked acrylic rubber polymer. The cross-linked acrylic rubber polymer is dispersed in the Nylon plastic. The cross-linked acrylic rubber polymer is formed by a modified acrylic rubber polymer having a hydrolysable silane group through crosslinking in the presence of water. In the modified acrylic rubber polymer having a hydrolysable silane group, a linkage group represented by formula (I) or formula (II) is between a backbone and the hydrolysable silane group: wherein R1 is H or —OH; R2 is H, —Z?—Si(OR?)3 or C1-C10 hydrocarbon group; R3 is H or C1-C10 hydrocarbon group; Z? is a divalent bridging group; R? is individually C1-C10 hydrocarbon group. A manufacturing method of the thermoplastic vulcanizate is also provided.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 11, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-an Wu, Bing-Jyun Zeng, Po-I Wang, Fu-Ming Chien, Fan-Jie Lin, Sheng-Lung Chang
  • Publication number: 20200181371
    Abstract: A thermoplastic vulcanizate is provided, including 10-50 parts by weight of a nylon plastic and 50-90 parts by weight of a cross-linked acrylic rubber polymer. The cross-linked acrylic rubber polymer is dispersed in the Nylon plastic. The cross-linked acrylic rubber polymer is formed by a modified acrylic rubber polymer having a hydrolysable silane group through crosslinking in the presence of water. In the modified acrylic rubber polymer having a hydrolysable silane group, a linkage group represented by formula (I) or formula (II) is between a backbone and the hydrolysable silane group: wherein R1 is H or —OH; R2 is H, —Z?—Si(OR?)3 or C1-C10 hydrocarbon group; R3 is H or C1-C10 hydrocarbon group; Z? is a divalent bridging group; R? is individually C1-C10 hydrocarbon group. A manufacturing method of the thermoplastic vulcanizate is also provided.
    Type: Application
    Filed: December 28, 2018
    Publication date: June 11, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-an WU, Bing-Jyun ZENG, Po-I WANG, Fu-Ming CHIEN, Fan-Jie LIN, Sheng-Lung CHANG