Patents by Inventor Fan Jin

Fan Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220050288
    Abstract: The present application relates to an off-axis two-mirror infrared imaging system including a primary reflecting mirror and a secondary reflecting mirror. The primary reflecting mirror is located on the incident light path of an incident infrared light beam and reflects the incident infrared light beam to form a first reflected light beam. The secondary reflecting mirror is located on the reflection light path of the primary reflecting mirror, and is used to reflect the first reflected light beam to form a second reflected light beam. The second reflected light beam reaches an image surface after passing through the incident infrared light beam. The reflective surfaces of the primary reflecting mirror and the secondary reflecting mirror are freeform surfaces. The secondary reflecting mirror and the image plane are respectively located on both sides of the incident infrared light beam.
    Type: Application
    Filed: June 2, 2021
    Publication date: February 17, 2022
    Inventors: WEI-CHEN WU, JUN ZHU, GUO-FAN JIN, SHOU-SHAN FAN
  • Patent number: 11249292
    Abstract: A freeform surface off-axial three-mirror imaging system comprising a primary mirror, a secondary mirror, a tertiary mirror, and a detector. The secondary mirror comprises a first freeform surface and a second freeform surface. Each reflective surface of the primary mirror, the first freeform surface, the second freeform surface and the tertiary mirror is an xy polynomial freeform surface. The freeform surface off-axial three-mirror imaging system comprises a first field of view formed by the first freeform surface and a second field of view formed by the second freeform surface.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: February 15, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Rui-rui Tang, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 11221471
    Abstract: A freeform surface off-axis three-mirror optical system comprises a primary mirror, a secondary mirror, a tertiary mirror, an aperture stop located on the secondary mirror, and an image surface. An incident light beam emitted from an object irradiates and is reflected on the primary mirror to form a first reflected light beam. The first reflected light beam irradiates and is reflected on the secondary mirror to form a second reflected light beam. The second reflected light beam passes through the incident light beam, and then irradiates and is reflected on the tertiary mirror to form a third reflected light beam. The third reflected light beam passes through the incident light beam and does not pass through the secondary mirror, and finally reaches the image surface for imaging. A reflective surface of each of the primary mirror, the secondary mirror, and the tertiary mirror is an xy polynomial freeform surface.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: January 11, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ben-qi Zhang, Jun Zhu, Guo-Fan Jin, Shou-Shan Fan
  • Publication number: 20210373288
    Abstract: A method for designing freeform surface imaging system comprises: constructing a series of coaxial spherical systems with different optical power (OP) distributions; tilting all optical elements of each coaxial spherical system by a series of angles to obtain a series of off-axis spherical systems; finding all unobscured off-axis spherical systems; and then specifying a system size or structural constraints, and finding a series of compact unobstructed off-axis spherical systems; constructing a series of freeform surface imaging systems based on the series of compact unobstructed off-axis spherical system, and correcting the OP of entire system; improving an image quality of each freeform surface imaging systems and finding an optimal tilt angle of an image surface; and automatically evaluating an image quality of each freeform surface imaging system based on an evaluation metric, and outputting the freeform surface imaging systems that meet a given requirements.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 2, 2021
    Inventors: JUN ZHU, Ben-qi Zhang, GUO-FAN JIN
  • Publication number: 20210373303
    Abstract: A freeform surface off-axis three-mirror optical system comprises a primary mirror, a secondary mirror, a tertiary mirror, an aperture stop located on the secondary mirror, and an image surface. An incident light beam emitted from an object irradiates and is reflected on the primary mirror to form a first reflected light beam. The first reflected light beam irradiates and is reflected on the secondary mirror to form a second reflected light beam. The second reflected light beam passes through the incident light beam, and then irradiates and is reflected on the tertiary mirror to form a third reflected light beam. The third reflected light beam passes through the incident light beam and does not pass through the secondary mirror, and finally reaches the image surface for imaging. A reflective surface of each of the primary mirror, the secondary mirror, and the tertiary mirror is an xy polynomial freeform surface.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 2, 2021
    Inventors: Ben-qi Zhang, JUN ZHU, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20210347640
    Abstract: A method for removing ash from a solid carbon material: Reaction conditions are mild, and ash may be removed more effectively. The ash removing method comprises: S1) mixing an alkaline sub-molten salt medium and a solid carbonaceous material to be treated, heating so that alkali and ash in the solid carbonaceous material to be treated react in the alkaline sub-molten salt medium, and performing solid-liquid separation on a mixed slurry resulting from the reaction to obtain a first solid product and an alkali treatment solution, wherein in the alkaline sub-molten salt medium, the mass fraction of the alkali is greater than or equal to 50%; S2) using an acid solution to perform acid cleaning treatment on the first solid product, and performing solid-liquid separation again to obtain a second solid product and an acid cleaning solution.
    Type: Application
    Filed: September 26, 2019
    Publication date: November 11, 2021
    Applicant: National Institute of Clean-and-Low-Carbon Energy
    Inventors: Lijun Zhao, Wenhua Li, Aiguo Chen, Fan Jin, Xiaolin Jiang, Huidong Liu, Yongfeng Xiao
  • Patent number: 11122569
    Abstract: This application provides an example method for transmitting base station data. The method includes receiving a precoding matrix indication (PMI) value and reference signal received power (RSRP) that are sent by user equipment. The method also includes determining, based on the PMI value, a network area group corresponding to the user equipment. The method further includes determining, based on the RSRP, a network area in which the user equipment is located.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 14, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Libiao Wang, Fan Jin, Wei Chen, Xiaolong Zhu
  • Patent number: 11099367
    Abstract: A freeform surface off-axial three-mirror imaging system comprising a primary mirror, a secondary mirror, a tertiary mirror, and a detector. The secondary mirror comprises a first freeform surface and a second freeform surface. Each reflective surface of the primary mirror, the first freeform surface, the second freeform surface and the tertiary mirror is an xy polynomial freeform surface. The freeform surface off-axial three-mirror imaging system comprises a first effective focal length and a second effective focal length different from the first effective focal length.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: August 24, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Rui-rui Tang, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 11095767
    Abstract: A screen display method includes: acquiring screen status when a specified operation is received, the screen status being status of the first display screen and/or status of the second display screen; selecting a display screen from a first display screen and a second display screen according to the screen status and the specified operation; and displaying a first current interface on the selected display screen.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: August 17, 2021
    Assignee: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.
    Inventors: Jiayan Li, Fan Jin, Jiayi Li
  • Publication number: 20210215918
    Abstract: A freeform surface off-axial three-mirror imaging system is provided. The freeform surface off-axial three-mirror imaging system comprises a primary mirror, a secondary mirror, and a compensating mirror. The primary mirror, the secondary mirror, and the compensating mirror are located adjacent and spaced away from each other. A surface shape of each of the primary mirror and the secondary mirror is a quadric surface. The primary mirror is used as an aperture stop. A surface shape of the compensating mirror is a freeform surface. A light emitted from a light source is reflected by the primary mirror, the secondary mirror, and the compensating mirror to form an image on an image plane.
    Type: Application
    Filed: August 21, 2020
    Publication date: July 15, 2021
    Inventors: JUN ZHU, Rui-rui Tang, WEI-CHEN WU, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20210215924
    Abstract: A freeform surface optical telescope imaging system is provided. The freeform surface optical telescope imaging system comprises a primary mirror, a secondary mirror, a compensating minor, and a spherical mirror. The primary minor, the secondary minor, the compensating minor, and the spherical mirror are spaced from each other. A surface shape of each of the primary mirror and the secondary mirror is a quadric surface. The primary mirror is used as an aperture stop. A surface shape of the compensating mirror is a freeform surface. A surface shape of the spherical mirror is a spherical surface. A light emitted from a light source would be reflected by the primary mirror, the secondary minor, the compensating mirror, and the spherical mirror to form an image on an image plane.
    Type: Application
    Filed: August 21, 2020
    Publication date: July 15, 2021
    Inventors: JUN ZHU, Rui-rui Tang, WEI-CHEN WU, GUO-FAN JIN, SHOU-SHAN FAN
  • Patent number: 11043521
    Abstract: A freeform surface off-axial three-mirror imaging system comprising a primary mirror, a secondary mirror, a tertiary mirror, and an image sensor. Each reflective surface of the primary mirror, the secondary mirror, and the tertiary mirror is an xy polynomial freeform surface. A field angle of the freeform surface off-axial three-mirror imaging system is larger than or equal to 60°×1°. An F-number of the freeform surface off-axial three-mirror imaging system is less than or equal to 2.5.
    Type: Grant
    Filed: December 23, 2018
    Date of Patent: June 22, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Rui-rui Tang, Ben-qi Zhang, Jun Zhu, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 11025841
    Abstract: The present invention relates to a method for designing a freeform surface reflective imaging system, comprising: selecting an initial system, wherein an FOV of the initial system is X0×Y0; selecting an FOV sequence as [X0, Y0], [X1, Y1], [X2, Y2], . . . , [Xn, Yn], while the FOV of the system to be designed is Xn×Yn, and X0<X1<X2< . . . <Xn, Y0<Y1<Y2< . . . <Yn; using point-by-point methods to construct all freeform surfaces of the initial system in the FOV of X1×Y1; setting the system obtained in the last step as a second initial system for system construction in the FOV of X2×Y2; repeating the last step to execute system construction in the order of the FOV sequence until the final FOV Xn×Yn is obtained.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 1, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wei-Chen Wu, Jun Zhu, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 10983316
    Abstract: The present disclosure relates to a method of designing a freeform surface off-axial imaging system. The method comprises the steps of establishing an initial system and selecting feature fields; gradually enlarging a construction of feature field, and constructing the initial system into a freeform surface system; and expanding a construction area of each freeform surface of the freeform surface system, and reconstructing the freeform surface in an extended construction area.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 20, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Rui-rui Tang, Ben-qi Zhang, Jun Zhu, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 10962413
    Abstract: A freeform surface imaging spectrometer system including a primary mirror, a secondary mirror, a tertiary mirror, and a detector is provided. The secondary mirror is a grating having a freeform surface shape, and the grating having the freeform surface shape is obtained by intersecting a set of equally spaced parallel planes with a freeform surface. A plurality of feature rays exiting from a light source is successively reflected by the primary mirror, the secondary mirror and the tertiary mirror to form an image on an image sensor. A reflective surface of each of the primary mirror, the tertiary mirror surface and the tertiary mirror is an xy polynomial freeform surface.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 30, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Ben-qi Zhang, Guo-Fan Jin, Shou-Shan Fan
  • Publication number: 20210033469
    Abstract: The present invention relates to a freeform surface reflective infrared imaging system comprising a primary mirror, a secondary mirror, a tertiary mirror, and an infrared light detector. Each reflective surface of the primary mirror, the secondary mirror, and the tertiary mirror is an xy polynomial freeform surface. A field of view of the freeform surface reflective infrared imaging system is larger than or equal to 40°×30°. An F-number of the freeform surface reflective infrared imaging system is less than or equal to 1.39.
    Type: Application
    Filed: June 29, 2020
    Publication date: February 4, 2021
    Inventors: WEI-CHEN WU, JUN ZHU, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20210037199
    Abstract: The present invention relates to a method for designing a freeform surface reflective imaging system, comprising: selecting an initial system, wherein an FOV of the initial system is X0×Y0; selecting an FOV sequence as [X0, Y0], [X1, Y1], [X2, Y2], . . . , [Xn, Yn], while the FOV of the system to be designed is Xn×Yn, and X0<X1<X2< . . . <Xn, Y0<Y1<Y2< . . . <Yn; using point-by-point methods to construct all freeform surfaces of the initial system in the FOV of X1×Y1; setting the system obtained in the last step as a second initial system for system construction in the FOV of X2×Y2; repeating the last step to execute system construction in the order of the FOV sequence until the final FOV Xn×Yn is obtained.
    Type: Application
    Filed: June 24, 2020
    Publication date: February 4, 2021
    Inventors: WEI-CHEN WU, JUN ZHU, GUO-FAN JIN, SHOU-SHAN FAN
  • Publication number: 20210029240
    Abstract: A screen display method includes: acquiring screen status when a specified operation is received, the screen status being status of the first display screen and/or status of the second display screen; selecting a display screen from a first display screen and a second display screen according to the screen status and the specified operation; and displaying a first current interface on the selected display screen.
    Type: Application
    Filed: January 14, 2020
    Publication date: January 28, 2021
    Applicant: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.
    Inventors: Jiayan LI, Fan JIN, Jiayi LI
  • Patent number: 10816794
    Abstract: A method for designing illumination system with freeform surface, the method comprising: presupposing a plurality of expected light spots; establishing an initial system, wherein the initial system comprises a plurality of collimated light sources, a plane lens and a target plane; designing a sphere lens to replace the plane lens, and obtaining a before-construction-iteration illumination system; selecting a plurality of feature rays and obtaining a plurality of target points; taking the before-construction-iteration illumination system as an initial construction-iteration system, and obtaining an after-construction-iteration illumination system with freeform surface by making multiple construction-iteration, wherein the illumination system with freeform surface is configured to form the plurality of expected light spots.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: October 27, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Xiao-Fei Wu, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 10812232
    Abstract: Embodiments of this application disclose a method for scheduling a terminal. The method includes the following operations: receiving a precoding matrix indication PMI value and reference signal received power RSRP that are sent by user equipment; determining, based on the PMI value, grouping of a network area corresponding to the user equipment; and determining, based on the RSRP, a network area in which the user equipment is located. This application has the advantage of avoiding interference between network areas.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 20, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Libiao Wang, Fan Jin, Wei Chen