Patents by Inventor Fan-Wei Chang

Fan-Wei Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9331107
    Abstract: A fabrication method of a pixel structure includes the following steps. A first metal layer is patterned to form a source electrode and a drain electrode. A semiconductor material layer is patterned to form a channel layer and a pixel pattern. A first insulation layer is formed to cover the channel layer, the source electrode, the drain electrode and the pixel pattern. A gate electrode is formed on the first insulation layer located above the channel layer. A second insulation layer is formed to cover the gate electrode and the first insulation layer. A pixel opening is formed in the first insulation layer and the second insulation layer to expose a partial region of the pixel pattern. The partial region of the pixel pattern exposed by the pixel opening is modified so as to form a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 3, 2016
    Assignee: Au Optronics Corporation
    Inventors: Wei-Hao Tseng, Fan-Wei Chang, Shou-Wei Fang, Hong-Syu Chen, Jen-Yu Lee, Tsung-Hsiang Shih, Hung-Che Ting
  • Patent number: 9331106
    Abstract: A fabrication method of a pixel structure includes the following steps. A first metal layer is patterned to form a source electrode and a drain electrode. A semiconductor material layer is patterned to form a channel layer and a pixel pattern. A first insulation layer is formed to cover the channel layer, the source electrode, the drain electrode and the pixel pattern. A gate electrode is formed on the first insulation layer located above the channel layer. A second insulation layer is formed to cover the gate electrode and the first insulation layer. A pixel opening is formed in the first insulation layer and the second insulation layer to expose a partial region of the pixel pattern. The partial region of the pixel pattern exposed by the pixel opening is modified so as to form a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 3, 2016
    Assignee: Au Optronics Corporation
    Inventors: Wei-Hao Tseng, Fan-Wei Chang, Shou-Wei Fang, Hong-Syu Chen, Jen-Yu Lee, Tsung-Hsiang Shih, Hung-Che Ting
  • Patent number: 9263481
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: February 16, 2016
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 9147700
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 29, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150270293
    Abstract: A fabrication method of a pixel structure includes the following steps. A first metal layer is patterned to form a source electrode and a drain electrode. A semiconductor material layer is patterned to form a channel layer and a pixel pattern. A first insulation layer is formed to cover the channel layer, the source electrode, the drain electrode and the pixel pattern. A gate electrode is formed on the first insulation layer located above the channel layer. A second insulation layer is formed to cover the gate electrode and the first insulation layer. A pixel opening is formed in the first insulation layer and the second insulation layer to expose a partial region of the pixel pattern. The partial region of the pixel pattern exposed by the pixel opening is modified so as to form a pixel electrode electrically connected to the drain electrode.
    Type: Application
    Filed: May 22, 2015
    Publication date: September 24, 2015
    Inventors: Wei-Hao Tseng, Fan-Wei Chang, Shou-Wei Fang, Hong-Syu Chen, Jen-Yu Lee, Tsung-Hsiang Shih, Hung-Che Ting
  • Publication number: 20150123111
    Abstract: A fabrication method of a pixel structure includes the following steps. A first metal layer is patterned to form a source electrode and a drain electrode. A semiconductor material layer is patterned to form a channel layer and a pixel pattern. A first insulation layer is formed to cover the channel layer, the source electrode, the drain electrode and the pixel pattern. A gate electrode is formed on the first insulation layer located above the channel layer. A second insulation layer is formed to cover the gate electrode and the first insulation layer. A pixel opening is formed in the first insulation layer and the second insulation layer to expose a partial region of the pixel pattern. The partial region of the pixel pattern exposed by the pixel opening is modified so as to form a pixel electrode electrically connected to the drain electrode.
    Type: Application
    Filed: March 20, 2014
    Publication date: May 7, 2015
    Applicant: Au Optronics Corporation
    Inventors: Wei-Hao Tseng, Fan-Wei Chang, Shou-Wei Fang, Hong-Syu Chen, Jen-Yu Lee, Tsung-Hsiang Shih, Hung-Che Ting
  • Publication number: 20150126006
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150123128
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8969146
    Abstract: A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8759165
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 24, 2014
    Assignee: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20140127844
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8674365
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: March 18, 2014
    Assignee: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20130134425
    Abstract: A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 30, 2013
    Applicant: AU OPTRONICS CORP.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting