Patents by Inventor Fang-Chang Liu

Fang-Chang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11101349
    Abstract: A lateral power semiconductor device with a metal interconnect layout for low on-resistance. The metal interconnect layout includes first, second, and third metal layers, each of which include source bars and drain bars. Source bars in the first, second, and third metal layers are electrically connected. Drain bars in the first, second, and third metal layers are electrically connected. In one embodiment, the first and second metal layers are parallel, and the third metal layer is perpendicular to the first and second metal layers. In another embodiment, the first and third metal layer are parallel, and the second metal layer is perpendicular to the first and third metal layers. A nonconductive layer ensures solder bumps electrically connect to only source bars or only drain bars. As a result, a plurality of available pathways exists and enables current to take any of the plurality of available pathways.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 24, 2021
    Assignee: Efficient Power Conversion Corporation
    Inventors: Wen-Chia Liao, Jianjun Cao, Fang Chang Liu, Muskan Sharma
  • Publication number: 20200075726
    Abstract: A lateral power semiconductor device with a metal interconnect layout for low on-resistance. The metal interconnect layout includes first, second, and third metal layers, each of which include source bars and drain bars. Source bars in the first, second, and third metal layers are electrically connected. Drain bars in the first, second, and third metal layers are electrically connected. In one embodiment, the first and second metal layers are parallel, and the third metal layer is perpendicular to the first and second metal layers. In another embodiment, the first and third metal layer are parallel, and the second metal layer is perpendicular to the first and third metal layers. A nonconductive layer ensures solder bumps electrically connect to only source bars or only drain bars. As a result, a plurality of available pathways exists and enables current to take any of the plurality of available pathways.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Wen-Chia Liao, Jianjun Cao, Fang Chang Liu, Muskan Sharma
  • Patent number: 10312260
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. de Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9837438
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 5, 2017
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20170330898
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 16, 2017
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. de Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9583480
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: February 28, 2017
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9331191
    Abstract: A GaN transistor with reduced output capacitance and a method form manufacturing the same. The GaN transistor device includes a substrate layer, one or more buffer layer disposed on a substrate layer, a barrier layer disposed on the buffer layers, and a two dimensional electron gas (2DEG) formed at an interface between the barrier layer and the buffer layer. Furthermore, a gate electrode is disposed on the barrier layer and a dielectric layer is disposed on the gate electrode and the barrier layer. The GaN transistor includes one or more isolation regions formed in a portion of the interface between the at least one buffer layer and the barrier layer to remove the 2DEG in order to reduce output capacitance Coss of the GaN transistor.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: May 3, 2016
    Assignee: Efficient Power Conversion Corporation
    Inventors: Stephen L. Colino, Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20160111416
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Application
    Filed: December 3, 2015
    Publication date: April 21, 2016
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20160086980
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9214528
    Abstract: A method for forming an enhancement mode GaN HFET device with an isolation area that is self-aligned to a contact opening or metal mask window. Advantageously, the method does not require a dedicated isolation mask and the associated process steps, thus reducing manufacturing costs. The method includes providing an EPI structure including a substrate, a buffer layer a GaN layer and a barrier layer. A dielectric layer is formed over the barrier layer and openings are formed in the dielectric layer for device contact openings and an isolation contact opening. A metal layer is then formed over the dielectric layer and a photoresist film is deposited above each of the device contact openings. The metal layer is then etched to form a metal mask window above the isolation contact opening and the barrier and GaN layer are etched at the portion that is exposed by the isolation contact opening in the dielectric layer.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Chunhua Zhou, Jianjun Cao, Alexander Lidow, Robert Beach, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Seshadri Kolluri, Yanping Ma, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao
  • Patent number: 9214399
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9214461
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Coversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9171911
    Abstract: An integrated semiconductor device which includes a substrate layer, a buffer layer formed on the substrate layer, a gallium nitride layer formed on the buffer layer, and a barrier layer formed on the gallium nitride layer. Ohmic contacts for a plurality of transistor devices are formed on the barrier layer. Specifically, a plurality of first ohmic contacts for the first transistor device are formed on a first portion of the surface of the barrier layer, and a plurality of second ohmic contacts for the second transistor device are formed on a second portion of the surface of the barrier layer. In addition, one or more gate structures formed on a third portion of the surface of the barrier between the first and second transistor devices. Preferably, the one or more gate structures and the spaces between the gate structures and the source contacts of the transistor devices collectively form an isolation region that electrically isolates the first transistor device from the second transistor device.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: October 27, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Chunhua Zhou, Jianjun Cao, Alexander Lidow, Robert Beach, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Seshadri Kolluri, Yanping Ma, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao
  • Publication number: 20150034962
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20150028384
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20150028390
    Abstract: A GaN transistor with reduced output capacitance and a method form manufacturing the same. The GaN transistor device includes a substrate layer, one or more buffer layer disposed on a substrate layer, a barrier layer disposed on the buffer layers, and a two dimensional electron gas (2DEG) formed at an interface between the barrier layer and the buffer layer. Furthermore, a gate electrode is disposed on the barrier layer and a dielectric layer is disposed on the gate electrode and the barrier layer. The GaN transistor includes one or more isolation regions formed in a portion of the interface between the at least one buffer layer and the barrier layer to remove the 2DEG in order to reduce output capacitance Coss of the GaN transistor.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Inventors: Stephen L. Colino, Jianjun Cao, Robert Beach, Alexander Lidon, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20150011057
    Abstract: A method for forming an enhancement mode GaN HFET device with an isolation area that is self-aligned to a contact opening or metal mask window. Advantageously, the method does not require a dedicated isolation mask and the associated process steps, thus reducing manufacturing costs. The method includes providing an EPI structure including a substrate, a buffer layer a GaN layer and a barrier layer. A dielectric layer is formed over the barrier layer and openings are formed in the dielectric layer for device contact openings and an isolation contact opening. A metal layer is then formed over the dielectric layer and a photoresist film is deposited above each of the device contact openings. The metal layer is then etched to form a metal mask window above the isolation contact opening and the barrier and GaN layer are etched at the portion that is exposed by the isolation contact opening in the dielectric layer.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Inventors: Chunhua Zhou, Jianjun Cao, Alexander Lidow, Robert Beach, Alana Nakata, Robert Strittmatter, Guang Yuan Zhao, Seshadri Kolluri, Yanping Ma, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao
  • Patent number: 8823012
    Abstract: Enhancement-mode GaN devices having a gate spacer, a gate metal material and a gate compound that are self-aligned, and a methods of forming the same. The materials are patterned and etched using a single photo mask, which reduces manufacturing costs. An interface of the gate spacer and the gate compound has lower leakage than the interface of a dielectric film and the gate compound, thereby reducing gate leakage. In addition, an ohmic contact metal layer is used as a field plate to relieve the electric field at a doped III-V gate compound corner towards the drain contact, which leads to lower gate leakage current and improved gate reliability.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 2, 2014
    Assignee: Efficient Power Conversion Corporation
    Inventors: Alexander Lidow, Robert Beach, Alana Nakata, Jianjun Cao, Guang Yuan Zhao, Robert Strittmatter, Fang Chang Liu
  • Patent number: 8361898
    Abstract: A bonding pad structure for an optoelectronic device. The bonding pad structure includes a carrier substrate having a bonding pad region and an optoelectronic device region. An insulating layer is disposed on the carrier substrate, having an opening corresponding to the bonding pad region. A bonding pad is embedded in the insulating layer under the opening to expose the top surface thereof. A device substrate is disposed on the insulating layer corresponding to the optoelectronic device region. A cap layer covers the device substrate and the insulating layer excluding the opening. A conductive buffer layer is disposed in the opening to directly contact the bonding pad. The invention also discloses a method for fabricating the same.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 29, 2013
    Assignee: VisEra Technologies Company Limited
    Inventors: Kai-Chih Wang, Fang-Chang Liu
  • Publication number: 20120175631
    Abstract: Enhancement-mode GaN devices having a gate spacer, a gate metal material and a gate compound that are self-aligned, and a methods of forming the same. The materials are patterned and etched using a single photo mask, which reduces manufacturing costs. An interface of the gate spacer and the gate compound has lower leakage than the interface of a dielectric film and the gate compound, thereby reducing gate leakage. In addition, an ohmic contact metal layer is used as a field plate to relieve the electric field at a doped III-V gate compound corner towards the drain contact, which leads to lower gate leakage current and improved gate reliability.
    Type: Application
    Filed: February 23, 2012
    Publication date: July 12, 2012
    Inventors: Alexander Lidow, Robert Beach, Alana Nakata, Jianjun Cao, Guang Yuan Zhao, Robert Strittmatter, Fang Chang Liu